一类四阶边值问题的多解结果
Multiplicity Results for a Fourth-Order Boundary Value Problem
-
摘要: 本文研究一类弹性梁方程边值问题y(1)-α1y+β1y"+g(x,y,y")=e,02(0.1),而g:[0,1]×R×R→R为连续有界函数,特征对(α1,β1)满足α1+(0+0.5)2π2β1=(0+0.5)4π4及α1+(k+0.5)2π2β1≠(k+0.5)4π4,∀k∈NAbstract: This paper deals with multiplicity results for nonlinear elastic equations of the y(1)-α1y+β1y"+g(x,y,y")=e,02(0.1),g:[0,1]×R×R→R is a bouuded continuous function. and the pair(α1,β1) satisfies α1+(0+0.5)2π2β1=(0+0.5)4π4 and α1+(k+0.5)2π2β1≠(k+0.5)4π4,for all ∀k∈N.
-
Key words:
- clastic beam /
- beam /
- wow-parameter eigenvalue problem
-
[1] D.G.Gosta and J.V.A.Goncalves.Existence and multiplicity results for a class of nonlinear elliptic boundary、clue problems at resonance,J.Math,Anal.Appl,84(1981).328-338. [2] M.A.Delpino and R.F.Manasevich.Existence for a fourth-order boundary value problem under a two-parameter nonresonance condition,Proc,Amer,Math,Soc,112(1991),81-86. [3] C.P.Gupta,Existence and uniqueness theorems for the bending of an elastic beam equation,Applicable Analysis,26(1988),289-304. [4] C.P.Gupta,Existence and uniqueness theorems for some fourth-order fully quasilinear boundary value problems,Applicable Analysis,36(1991),157-169. [5] 马如云.弹性梁方程共振间题灼几个多解存在定理,应用数学和力学,14(2)(1993),181-188. [6] J.Mawhin,J.R.Ward and M.Willem,Necessary and sufficient conditions of a nonlinear two-point boundary value problems,Proc.,Amer.Math.Soc.,93(1985),667-674. [7] R.A.Usmini,A uniqueness theorem for a boundary value problem,Prop.Amer.Math,Sic.,77(1979),329-335. [8] Y.Yang,Fourth-order two-point boundary value problems,Proc.,Amer,Math,Soc.,104(1988),175-180.
计量
- 文章访问数: 1910
- HTML全文浏览量: 117
- PDF下载量: 452
- 被引次数: 0