## 留言板

 引用本文: 张明焕, 汤任基. 裂纹与弹性夹杂的相互影响*[J]. 应用数学和力学, 1995, 16(4): 289-300.
Zhang Ming-huan, Tang Ren-ji. Interaction Between Crack and Elastic Inclusion[J]. Applied Mathematics and Mechanics, 1995, 16(4): 289-300.
 Citation: Zhang Ming-huan, Tang Ren-ji. Interaction Between Crack and Elastic Inclusion[J]. Applied Mathematics and Mechanics, 1995, 16(4): 289-300.

## Interaction Between Crack and Elastic Inclusion

• 摘要: 本文利用无限域上单根弹性夹杂和单根裂纹产生的位移和应力,将裂纹与弹性夹杂的相互影响问题归为解一组柯西型奇异积分方程,然后用此对夹杂分枝裂纹解答的奇性性态作了理论分析,并求得了振荡奇性界面应力场,对于不相交的夹杂裂纹问题,具体计算了端点的应力强度因子及夹杂上的界面应力,结果令人满意。
•  [1] Muskhelishvili,N, I.,Some Basic Problems of the Methemotical Theory of Elasticity, Noordhoff,Groningen,Holland(1953). [2] Chen,Y, Z, and H, Norio,An alternative Fredholm integral equation approach for multiple crack problem and multiple rigid line problem in plane elasticity,Engng, Frac, Mech.,(2)(1992),257-268. [3] Liu Xue-hui and F, Erdogan,The crack-inclusion interaction problem, Engng,Frac. Mech,(5)(1986),821-832, [4] Atkinson,C.,Some ribbon-like inclusion problems,Internat, T.Engrg, Sci,11(1973),243-266. [5] Dundurs,J,-Elastic interaction of dislocations with inhomegeneities,in Mathematicla Theory of Dislocations,Ed.by T.Mura,New York(1969). [6] Erdogan,F,G, D, Gupta and T, S, Cook,Numerical solution of singular integral equations,in M echanics of Fracture I,Ed, by G, C.Sih.,Noordhoff (1973),368-425. [7] Wo Gou-wei, Qin Tai-yan and Tang Ren-ji, A new engineering model for a linear inclusion and its applicatjoas,Acts Mechanics Solids Sinica (submitted for publication), [8] Muskhelishvi1i,N, I.,Singular Integral Equations,Noorhoff(1953). [9] Tang Ren-ji and Li Yu-lan,Torsion of the cylinders with a rectangular hole and with a crack,Acts Mech.Sinica,8 (1992),165-172

##### 计量
• 文章访问数:  1498
• HTML全文浏览量:  9
• PDF下载量:  543
• 被引次数: 0
##### 出版历程
• 收稿日期:  1994-09-16
• 刊出日期:  1995-04-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈