## 留言板

 引用本文: 余燊. 一种引力, 电磁和自旋的非对偶统一场论[J]. 应用数学和力学, 1990, 11(2): 95-109.
Yu Xin. A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin[J]. Applied Mathematics and Mechanics, 1990, 11(2): 95-109.
 Citation: Yu Xin. A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin[J]. Applied Mathematics and Mechanics, 1990, 11(2): 95-109.

## A Non-Dualistic Unified Field Theory of Gravitation,Electromagnetism and Spin

• 摘要: 在Weyl,Eddington,Einstein和Schrödinger概念的框架中,经典统一场论常常不能令人信服,尤其找不到为什么Einstein-Maxwell(E-M)理论需要几何化的任何经验的理由.问题的关键并非是E-M理论是否完美,而是在经典意义下它能否回答现代的所有问题.特别是E-M理论不能提供一个经典理论框架,使Dirac方程能从其中导出,就象Schrdinger方程通过能量方程及对应原理从经典力学中导出一样.本文拟在这个如M.A.Tonnelat所提出的概念框架中,提出一种非对偶的统一场论(UFT).我们将度量式ds2=gμγdxγdxγ和非退化二次型F=(1/2t)φμγ dxγΛdxγ;对称地引入理论,得到一种非对偶的统一场论.它包含了Einstein的广义相对论和狭义的Born-Infeld电动力学.尤其重要的是本文指出,采用对应原理,描述在"外部的"引力-电磁场中电子的Dirac方程,可以由非对偶Einstein方程通过简单因式分解导出.
•  [1] Milne,E.A.,Relativity,Gravitation and World Structure,Oxford(1935). [2] Eisenhart,L.P.and O.Veblen,The Riemann geometry and its generalization,Proc.Nat.Acad.Sci.,8(1922),19. [3] Jeans,J.H.,Mathematical Treatise on Electricity and Magnetism,Cambridge(1925). [4] Imbert,C,Phys.Rev.,D 5(1972),787. [5] De Groot,S.R.and L.G.Suttorp,Foundations of Electrodynamics,North Holland,Amsterdam(1972). [6] Einstein,A.and W.Mayer,Sitzber.Preuss.Akad.Wiss.(1931),541. [7] Penrose,R.and W.Rindler,Spinors and Spacetime,Vols.Ⅰ&Ⅱ,C.U.P.(1984). [8] Zakharov,A.,Doklady Acad.Nauk.SSR,177(1967),70. [9] Klein,D.,Nucl.Phys.,B21(1970),153. [10] Bleecker,D.,Variational Principles and Gauge Theory,W.A.Benjamin(1982). [11] Berestetskii,V.B.,E.M.Lifshitz and L.P.Piatevskii,Quantum Electrodynamics,Pergamon,Oxford(1975). [12] Eddington,A.S.,Mathematical Treatise on General Relativity,C.U.P.(1957). [13] Eddington,A.S.,Fundamental Theory,C.U.P.(1946). [14] Born,M.and L.Infeld,Proc.Roy.Soc.A.,144(1934),425. [15] 余桑,一种经典时空理论(Ⅰ)—基础,应用数学和力学,8,12(1987)1051-1084. [16] Yu Xin,A geometric theory of the creation field and gravitation,Proc.Int.Symp.on Exp.Gravitational Physics,Guangzhou,P.R.C.,Aug.(1987);Published by World Scientific,Singapore(1988),197. [17] Vaidya,P.C.,Proc.Indian Acad.Sci.,A33(1951),264. [18] Carmeli,M.,Classical Fields,J.Wiley&Sons(1982). [19] Gurtler,R.and D.Hestenes,J.Math.Phys.,16(1975),573. [20] Synge,J.L.,General Relativity,North-Holland(1960). [21] Rindler,W.,Essential General Relativity,Springer-Verlag(1979). [22] Kobayashi,S.and K.Nomizu,Foundations of Differential Geometry,Vol.1,Interscience(1963). [23] Yu Xin,The Ω-field theory of gravitation and cosmology,Astrophysics and Space Science,154(1989),321．

##### 计量
• 文章访问数:  1644
• HTML全文浏览量:  77
• PDF下载量:  448
• 被引次数: 0
##### 出版历程
• 收稿日期:  1989-02-01
• 刊出日期:  1990-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈