## 留言板

Fredholm第一种积分方程Ax=y的表示定理和一次迭代定理*

 引用本文: 云天铨. Fredholm第一种积分方程Ax=y的表示定理和一次迭代定理*[J]. 应用数学和力学, 1989, 10(7): 569-574.
Yun Tian-quan. Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y[J]. Applied Mathematics and Mechanics, 1989, 10(7): 569-574.
 Citation: Yun Tian-quan. Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y[J]. Applied Mathematics and Mechanics, 1989, 10(7): 569-574.

## Representation Theorem and One-Iteration Theorem for Fredholm Integral Equation of the First Kind Ax=y

• 摘要: 本文给出两个定理.表示定理指出:若具有界L2核的Fredholm第一种积分方程Ax=y有唯一解,则其中,一次迭代定理指出:可由公式=x0+g0A*(y-Ax0)一次迭代求得的充分和必要条件是满足下列条件之一:
•  [1] Mueller,P.F.and G.O.Reynolds,Image resloration by removal of random media degradations,J.Opt.Soc.Amer.,57(1967),1338-1344. [2] Andrews,H.C.,A.H.Tescher,and R.P.Kruger,Image processing by digital computer,IEEE Spectrum,2(1972),20-32. [3] Liskovec,O.A.,Regularization of ill posed problems and a connection with the method of quasi solution,Differencial'nye Uravmcnija,5(1969),1836-1847. [4] Liht,M.K.,The solution of minimizing a quadratic functional with approximate data,Z.Uycial.Nat.i Mat.Fiz.,19(1969),1004-1014. [5] Yun Tian-quan,Uniqueness theorem of non-singular itegral equation method,Transactions CSME,10(1986),197-200. [6] Yun Tian-quan,An integral equation method for solving the torsion problem of revolution bodies,J.H.I.T.,1(1979),82-97. MR 81m;73028. [7] 袁家乐,回转体一旋旋桨组合体之推力减额的一个数值预测方法,中国造船,87(1984)14-21. [8] Yun Tian-quan,Pile analysis by simple integral equation method,Appl.Math.& Mech.,2,3(1981),331-348. MR 83i:73014. [9] Pogorzelski,W.,Integral Equations and Their Applications,Vol.1,Pergamon Press,PWN-Polish Scientific Publishers(1966). [10] Landweber,L.,An iteration formula for Fredholm integral equations of the first kind,Amer.J.Math.,73(1951),615-624. [11] Diaz,J.B.and F.T.Metcalf,On iteration procedures for equations of the first kind,Ax=y,and Picard's criterion for the existence of a solution,Math.Comput.,24(1970),923-935. [12] 云天铨,Fredholm第一种积分方程Ax=y的最速迭代解法,华中工学院学报,3 (1978),94-98. [13] Smithies,F.,Integral Equations,Cambridge University Press(1956). [14] Stakgold,I.,Green's Functions and Boundary Value Problems,John Wiley & Sons,New York(1979). [15] Baker,C.T.H.,The numerical treatment of integral equations,Clarendon Press,Oxford(1977).

##### 计量
• 文章访问数:  1553
• HTML全文浏览量:  10
• PDF下载量:  399
• 被引次数: 0
##### 出版历程
• 收稿日期:  1988-04-05
• 刊出日期:  1989-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈