Computing the Eigenvectors of a Matrix With Multiplex Eigenvalues by SVD Method
-
摘要: 若当(Jordan)形是矩阵在相似条件下的一个标准形,在代数理论及其工程应用中都具有十分重要的意义.针对具有重特征值的矩阵,提出了一种运用奇异值分解方法计算它的特征矢量及若当形的算法.大量数值例子的计算结果表明,该算法在求解具有重特征值的矩阵的特征矢量及若当形上效果良好,优于商用软件MATLAB和MATHEMATICA.Abstract: Every matrix is similar to a matrix in Jordan canonical form, which has very important sense in the theory of linear algebra and its engineering application. For a matrix with multiplex eigenvalues, an algorithm based on the singular value decomposition(SVD) for computing its eigenvectors and Jordan canonical form was proposed. Numerical simulation shows that this algorithm has good effect in computing the eigenvectors and its Jordan canonical form of a matrix with multiplex eigenvalues. It is superior to MATLAB and MATHEMATICA.
-
Key words:
- multiplex eigenvalue /
- eigenvector /
- eigenvector chain /
- Jordan canonical form
-
[1] The Math Works Inc.MATLAB user's Guide[M].Natick,Mass,U S Inc,1992. [2] 沈凤贤,丁英仁,赵文晖.Mathematica手册[M].北京:海洋出版社,1992. [3] 叶庆凯.控制系统计算机辅助设计[M].北京:北京大学出版社,1990. [4] 叶庆凯.矩阵重特征值的一种计算方法[J].控制理论与应用,1998,15(1):118—120. [5] 韩京清,何关钰,许可康.线性系统理论代数基础[M].沈阳:辽宁科学技术出版社,1989. [6] 北京大学数学力学系几何与代数科研室代数小组.高等代数[M].北京:人民教育出版社,1978.
计量
- 文章访问数: 2508
- HTML全文浏览量: 99
- PDF下载量: 1262
- 被引次数: 0