## 留言板

 引用本文: 孙博华, 黄义. 弹性基上锥壳一般弯曲问题的精确解[J]. 应用数学和力学, 1988, 9(5): 417-430.
Sun Bo-hua, Huang Yi. The Exact Solution for the General Bending Problems of Conical Shells on the Elastic Foundation[J]. Applied Mathematics and Mechanics, 1988, 9(5): 417-430.
 Citation: Sun Bo-hua, Huang Yi. The Exact Solution for the General Bending Problems of Conical Shells on the Elastic Foundation[J]. Applied Mathematics and Mechanics, 1988, 9(5): 417-430.

## The Exact Solution for the General Bending Problems of Conical Shells on the Elastic Foundation

• 摘要: 本文应用Donnell的简化假定,从弹性基上锥壳位移型微分方程组出发,通过引入一个位移函数U(s,θ)(在极限情况下就退化成V.S.Vlasov对于圆柱壳所引的位移函数[5]),将基本微分方程组化成为一个八阶可解偏微分方程.这个方程的一般解用级数形式给出.对于在实际中有广泛应用价值的Winkler弹性基上锥壳的轴对称弯曲问题,本文给出了详细的数值结果,并求出了边缘荷载作用下的影响系数,这对计算弹性基上锥壳组合结构有着重要的意义.
•  [1] Hoff, N.J., Thin conical shells under arbitrary loads, Journal of Applied Mechanics, Trans. ASME. 77(1955), 557-562. [2] Seide, P., A Donnell type theory for asymmetrical bending and buckling of thin conical shells, Journal of Applied Mechanics, Trans. ASME, 79(1957), 547-552. [3] Kovalenko, A.D., The Theory of Circular Conical Shells and Its Application in Mechanical Manufacture, Academy of Sciences of the Ukrainian SSR, Kiev(1963). [4] Huang Yih, The theory of conical shells and its application, Proc. of the fifth engineering mechanics, USA, 1,(1984), 539-542. [5] Vlasov, V.S., The General Theory of Shells and Its Industrial Apphcations, tekhizdat(1949).(in Russian) [6] Ince., Ordinary Differential Equations, London(1927).

##### 计量
• 文章访问数:  1417
• HTML全文浏览量:  29
• PDF下载量:  572
• 被引次数: 0
##### 出版历程
• 收稿日期:  1986-06-30
• 刊出日期:  1988-05-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈