留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有理分式的增广图示及其在工程控制论中的应用

汪家訸

汪家訸. 有理分式的增广图示及其在工程控制论中的应用[J]. 应用数学和力学, 1981, 2(4): 387-396.
引用本文: 汪家訸. 有理分式的增广图示及其在工程控制论中的应用[J]. 应用数学和力学, 1981, 2(4): 387-396.
Wong Chia-ho. Extended Graphical Representation of Rational Fractions with Applications to Cybernetics[J]. Applied Mathematics and Mechanics, 1981, 2(4): 387-396.
Citation: Wong Chia-ho. Extended Graphical Representation of Rational Fractions with Applications to Cybernetics[J]. Applied Mathematics and Mechanics, 1981, 2(4): 387-396.

有理分式的增广图示及其在工程控制论中的应用

Extended Graphical Representation of Rational Fractions with Applications to Cybernetics

  • 摘要: 本文研究有理分式的增广图示,分子分母分别为n及m次多项式的有理分式,它的根轨迹方程的次数,当n+m是偶数时,是y2的(n+m)/2-1次;当n+m是奇数时,是(n+m-1)/2次.因此,n+m≤10的图示数据能用公式计算有理分式的增广图示能应用于研究反馈系统及特征方程的任一实系数作参数的图线特性.用本文理论易证倒分式定理:K1=f(n)(s)/(F)(m)(s),与K2=F(m)(s)/f(n)(s)二者在复数平面上的根轨迹完全相同又由图示知识发现,不论n和m多大,只要有理分式的零点和极点在实轴上相间排列,它就没有复数根轨迹,这样的系统不会发生振荡,本文对这种分式可能存在的稳定区作较全面地分析.
  • [1] 汪家诛,多项式的增广图示及其在工程控制论中的应用,应用数学与力学,第2卷,第3期,(1981).
    [2] 袁兆鼎,毕德华,根轨迹计算法,应用数学与计算数学,I,1 (1464). 13-17.
    [3] Goldberg, J.H,Automatic Controls: Principles of Systems Dynamics,AIIyn and Bacon, lnc, Boston (1964). 235.
    [4] 钱学森,工程控制论,科学出版社(1956). 88.
    [5] Evaas.W. R.,Trans.AIEE, 67 (1948), 547-551.
    [6] Katsuhiko Ogata, Modern Control Eng:neerlny Prentice-Hall (1970).绪方胜彦著,现代控制工程,科学出版社,174-275.
    [7] Ku. Y.H,Analysis and Control of Linear Systems, (1962), 193-194.
  • 加载中
计量
  • 文章访问数:  1809
  • HTML全文浏览量:  83
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  1980-03-01
  • 刊出日期:  1981-08-15

目录

    /

    返回文章
    返回