## 留言板

 引用本文: 赵明皡, 李冬霞, 沈亚鹏. 三维横观各向同性介质界面裂纹的边界积分方程方法[J]. 应用数学和力学, 2005, 26(12): 1394-1400.
ZHAO Ming-hao, LI Dong-xia, SHEN Ya-peng. Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1394-1400.
 Citation: ZHAO Ming-hao, LI Dong-xia, SHEN Ya-peng. Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method[J]. Applied Mathematics and Mechanics, 2005, 26(12): 1394-1400.

## 三维横观各向同性介质界面裂纹的边界积分方程方法

• 中图分类号: O346.11

## Interfacial Crack Analysis in Three-Dimensional Transversely Isotropic Bi-Materials by Boundary Integral Equation Method

• 摘要: 基于两相三维横观各向同性介质的基本解和Somigliana恒等式，对三维横观各向同性介质中的任意形状的平片界面裂纹，以裂纹面上的不连续位移为待求参量建立了超奇异积分-微分方程，界面平行于横观各向同性面．根据发散积分的有限部积分理论，应用积分方程方法研究得到裂纹前沿的位移和应力场的表达式、奇性指数以及应力强度因子的不连续位移表达式．在非震荡情形下，超奇异积分-微分方程退化为超奇异积分方程，与均匀介质的超奇异积分方程形式完全相同．
•  [1] Hutchinson J W, Suo Z. Mixed-mode cracking in layered materials[J].Advances in Applied Mechanics,1992,29:63—191. [2] Ting T C T.Anisotropic Elasticity: Theory and Applications[M].New York:Oxford University Press,1996. [3] Choi S T, Shin H, Earmme Y Y. On the unified approach to anisotropic and isotropic elasticity for singularity, interface and crack in dissimilar media[J].Internat J Solids Structure,2003,40(6):1411—1431. [4] Keer L M, Chen S H, Comninou M.The interface penny-shaped crack reconsidered[J].Internat J Eng Sci,1978,16(10):765—772. [5] 汤任基，陈梦成，乐金朝.三维界面裂纹的理论分析[J].中国科学，1998,28（2）:177—182. [6] Lazarus V, Leblond J B.Three-dimensional crack-face weight functions for the semi-infinite interface crack—Ⅱ integrodifferential equations on the weight functions and resolution[J].J Mech Phys Solids,1998,46(3):513—536. [7] Pavlou D G.Green's function for the bimaterial elastic solid containing interface annular crack[J].Engineering Analysis With Boundary Elements,2002,26(10):845—853. [8] QU Jian-min, XUE Yi-bin.Three-dimensional interface cracks in anisotropic bimaterials: the non-oscillatory case[J].ASME J Appl Mech,1998,65(4):1048—1055. [9] ZHAO Ming-hao,SHEN Ya-peng,LIU Yuan-jie,et al.Method of analysis of cracks in three-dimensional transversely isotropic media: boundary integral equation approach[J].Engineering Analysis With Boundary Elements,1998,21(2):169—178. [10] Pan Y C,Chou T W.Green's functions for two-phase transversely isotropic materials[J].ASME J Appl Mech,1979,46(3):551—556.
##### 计量
• 文章访问数:  2783
• HTML全文浏览量:  102
• PDF下载量:  653
• 被引次数: 0
##### 出版历程
• 收稿日期:  2004-05-17
• 修回日期:  2005-08-17
• 刊出日期:  2005-12-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈