留言板

 引用本文: 胡宏玖, 郭兴明, 李培宁, 谢禹钧, 李洁. 描述低周疲劳裂纹扩展速率的循环J积分新参量[J]. 应用数学和力学, 2006, 27(2): 134-143.
HU Hong-jiu, GUO Xing-ming, LI Pei-ning, XIE Yu-jun, LI Jie. New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth[J]. Applied Mathematics and Mechanics, 2006, 27(2): 134-143.
 Citation: HU Hong-jiu, GUO Xing-ming, LI Pei-ning, XIE Yu-jun, LI Jie. New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth[J]. Applied Mathematics and Mechanics, 2006, 27(2): 134-143.

描述低周疲劳裂纹扩展速率的循环J积分新参量

作者简介:胡宏玖(1969- ),男,江西赣州人,副研究员,博士(联系人.Tel/Fax:+86-21-56338345;E-mail:huhongjiu@163.com).
• 中图分类号: O346.2

New Cyclic J-Integral for Low-Cycle Fatigue Crack Growth

• 摘要: 探讨了低周疲劳加载条件下的应力增量-应变增量关系，提出了模拟裂纹疲劳扩展的二维模型以建立新的循环J积分参量，详细阐述了该积分参量的定义、主要特点、物理意义以及数值计算方法，并通过紧凑拉伸试样的疲劳试验检验该积分参量的有效性．结果表明：该积分参量能够较好描述恒幅低周疲劳裂纹的扩展速率．此外，基于积分参量体系，从能量的角度解释了疲劳迟滞现象．
•  [1] Paris P C,Erdogan F.A critical analysis of crack propagation laws[J].J Basic Eng,1960,85:528—534. [2] Dowling N E,Begley J A.Fatigue crack growth during gross plasticity and the J-integral[J].ASTM STP,1976,590:82—103. [3] Tanaka K.The cyclic J-integral as a criterion for fatigue crack growth[J].Internat J Fracture,1983,22(2):91—104. [4] Tanaka K,Akiniwa Y,Shimizu K.Propagation and closure of small cracks in SiC particulate reinforced aluminum alloy in high cycle and low cycle fatigue[J].Eng Fract Mech,1996,55(5):751—762. [5] Wuthrich C.The extension of theJ-integral applied to fatigue cracking[J].Internat J Fracture,1982,20(2):R35—R37. [6] Chow C L,Lu T J.CyclicJ-integral in relation to fatigue crack initiation and propagation[J].Eng Fract Mech,1991,39(1):1—20. [7] Brose W R,Dowling N E.Size effects on the fatigue crack growth rate of type 304 stainless steel[J].ASTM STP,1979,668:720—735. [8] Matthias Weick, Jarir Aktaa. Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading[J].Internat J Fatigue,2003,25(9/11):1117—1124. [9] HU Hong-jiu,LEI Yue-bao,LI Pei-ning. Engineering method for calculation of cyclic J-integral[J].J Mech Strength,1998,20(4):257—260. [10] Miura N,Fujioka T,Kashima K.Evaluation of low-cycle fatigue crack growth and subsequent ductile fracture for cracked pipe experiments using cyclic J-integral[J].J Press Vess-T ASME,1996,323(1):249—256. [11] Skallerud B,Zhang Z L.On numerical analysis of damage evolution in cyclic elastic-plastic crack growth problems[J].Fatigue Fract Eng M Struct,2001,24(1):81—86. [12] CHEN Xue-dong,YANG Tie-cheng,JIANG Jia-ling,et al.An experimental research on the strain fatigue crack propagation in high-strain region of pressure vessels[J].J Exp Mech,2003,18(4):520—528. [13] Rice J R.A path independent integral and the approximate analysis of strain concentration by notches and cracks[J].J Appl Mech,1968,35:379—386. [14] Owen D R J,Fawkes A J.Engineering Fracture Mechanics: Numerical Methods and Applications[M].Swansea: Pineridge Press Limited, 1983. [15] Kumar V,German M D,Shih C F.An Engineering Approach for Elastic-Plastic Fracture Analysis[M].Palo Alto,CA:Electric Power Research Institute,1981. [16] 雷月葆.应变疲劳扩展与应力疲劳扩展的统一规律[D].上海:华东理工大学,1993. [17] Anderson T L.Fracture Mechanics: Fundamental and Application[M].Boston: CRC Press, 2000.

计量
• 文章访问数:  2340
• HTML全文浏览量:  24
• PDF下载量:  666
• 被引次数: 0
出版历程
• 收稿日期:  2005-08-23
• 修回日期:  2005-10-17
• 刊出日期:  2006-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈