留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于投影算子的回归神经网络模型及其在最优化问题中的应用

马儒宁 陈天平

马儒宁, 陈天平. 基于投影算子的回归神经网络模型及其在最优化问题中的应用[J]. 应用数学和力学, 2006, 27(4): 484-494.
引用本文: 马儒宁, 陈天平. 基于投影算子的回归神经网络模型及其在最优化问题中的应用[J]. 应用数学和力学, 2006, 27(4): 484-494.
MA Ru-ning, CHEN Tian-ping. Recurrent Neural Network Model Based on Projective Operator and Its Application to Optimization Problems[J]. Applied Mathematics and Mechanics, 2006, 27(4): 484-494.
Citation: MA Ru-ning, CHEN Tian-ping. Recurrent Neural Network Model Based on Projective Operator and Its Application to Optimization Problems[J]. Applied Mathematics and Mechanics, 2006, 27(4): 484-494.

基于投影算子的回归神经网络模型及其在最优化问题中的应用

详细信息
    作者简介:

    马儒宁(1976- ),男,山东济宁人,博士(联系人.Tel:+86-25-81672925;E-mail:mrning@nuaa.edu.cn)

  • 中图分类号: O29;TP18

Recurrent Neural Network Model Based on Projective Operator and Its Application to Optimization Problems

  • 摘要: 研究了一种基于投影算子的神经网络模型.与以前研究投影算子的值域一般是n维欧氏空间中的紧凸子集不同,而是n维欧氏空间中未必有界的闭凸子集,同时目标函数也是一般的连续可微函数,未必为凸函数.证明了所研究的神经网络模型具有整体解轨道,以及当目标函数满足某些条件时解轨道的整体收敛性.此外,还将所研究的模型应用于闭凸约束极小化问题以及非线性互补问题和隐互补问题中,并通过数值模拟说明了该神经网络方法的有效性.
  • [1] Hopfield J J,Tank D W.Neural computation of decision in optimization problem[J].Biol Cybern,1985,52(1):141—152.
    [2] Tank D W,Hopfield J J.Simple ‘neural’ optimization networks: an A/D converter, signal decision circuit, and a linear programming circuit[J].IEEE Trans Circuits Syst (Ⅰ),1988,35(5):554—562. doi: 10.1109/31.1783
    [3] Bouzerdoum A,Pattison T R.Neural network for quadratic optimization with bound constraints[J].IEEE Transactions on Neural Networks,1993,4(2):293—303. doi: 10.1109/72.207617
    [4] Perez-Ilzarbe M J.Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints[J].IEEE Transactions on Neural Networks,1998,9(6):1344—1351. doi: 10.1109/72.728385
    [5] Liang X B,Wang J.A recurrent neural network for nonlinear optimization with a continuosly differentiable objective function and bound constraints[J].IEEE Transactions on Neural Networks,2000,11(6):1251—1262. doi: 10.1109/72.883412
    [6] XIA You-shen,Leung Henry,WANG Jun.A projection neural network and its application to constrained optimization problems[J].IEEE Trans Circuits Syst (Ⅰ),2002,49(4):447—458. doi: 10.1109/81.995659
    [7] XIA You-shen,WANG Jun.A recurrent neural network for solving linear projection equations[J].Neural Networks,2000,13(3):337—350. doi: 10.1016/S0893-6080(00)00019-8
    [8] Liang X B.A recurrent neural network for nonlinear continuously differentiable optimization over a compact convex subset[J].IEEE Transactions on Neural Networks,2001,12(6):1487—1490. doi: 10.1109/72.963784
    [9] Liang X B.Qualitative analysis of a recurrent neural network for nonlinear continuously differentiable convex minimization over a nonempty closed convex subset[J].IEEE Transactions on Neural Networks,2001,12(6):1521—1525. doi: 10.1109/72.963790
    [10] Kinderlehrer D,Stampcchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:Academic,1980.
    [11] Courant R,John F.Introduction to Calculus and Analysis[M].Vol 1.New York:Wiley,1989.
    [12] Fischer A.An NCP-function and its use for the solution of complementarity problems[A]In:Du D,Qi L,Womersley R,Eds.Recent Advance in Nonsmooth Optimization[C].New Jersey:World Scientific Publishers,1995,88—105.
    [13] Fischer A.New constrained optimization reformulation of complementarity problems[J].Journal of Optimization Theory and Applications,1998,97(1):105—117. doi: 10.1023/A:1022627217515
    [14] Qi H,Liao L.A smoothing Newton method for general nonlinear complementarity problems[J].Computational Optimization Applications,2000,17(2/3):231—253. doi: 10.1023/A:1026554432668
    [15] Kojima M,Shindo S.Extensions of Newton and quasi-Newton methods to systems of PC1 equations[J].J Oper Res Soc Jpn,1986,29:352—374.
  • 加载中
计量
  • 文章访问数:  2530
  • HTML全文浏览量:  103
  • PDF下载量:  536
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-03-24
  • 修回日期:  2006-01-10
  • 刊出日期:  2006-04-15

目录

    /

    返回文章
    返回