## 留言板

 引用本文: 袁益让, 杜宁, 王文洽, 程爱杰, 韩玉笈. 三维非线性对流扩散问题的数值方法在渗流力学的应用[J]. 应用数学和力学, 2006, 27(5): 605-614.
YUAN Yi-rang, DU Ning, WANG Wen-qia, CHENG Ai-jie, HAN Yu-ji. Numerical Method for the Three-Dimensional Nonlinear Convection-Dominated Problem of Dynamics of Fluids in Porous Media[J]. Applied Mathematics and Mechanics, 2006, 27(5): 605-614.
 Citation: YUAN Yi-rang, DU Ning, WANG Wen-qia, CHENG Ai-jie, HAN Yu-ji. Numerical Method for the Three-Dimensional Nonlinear Convection-Dominated Problem of Dynamics of Fluids in Porous Media[J]. Applied Mathematics and Mechanics, 2006, 27(5): 605-614.

## 三维非线性对流扩散问题的数值方法在渗流力学的应用

###### 作者简介:袁益让(1935- ),男,教授(联系人.Tel:+86-531-88364732;Fax:+86-531-88564652;E-mail:yryuan@sdu.edu.cn).
• 中图分类号: O241.82

## Numerical Method for the Three-Dimensional Nonlinear Convection-Dominated Problem of Dynamics of Fluids in Porous Media

• 摘要: 对三维非线性对流扩散问题提出一类适合并行计算的二阶迎风分数步差分格式，采用分数步技术，将三维问题化为连续解3个一维问题计算．利用变分形式、能量方法、差分算子乘积交换性、高阶差分算子的分解、微分方程先验估计的理论和技巧，得到收敛性的最佳阶的误差估计．该方法已成功的应用油资源运移聚集渗流力学数值模拟计算、海水入侵预测和防治的工程实践中．
•  [1] Ewing R E.The Mathematics of Reservoir Simulation[M].Philadelphia: SIAM, 1983. [2] Bredehoeft J D,Pinder G F.Digital analysis of areal folw in multiaquifer goundwater systems: a quasi-three-dimensional model[J].Water Resources Research,1970,6(3):893—888. [3] Don W, Emil O F.An iterative quasi-three-dimensional finite element model for heterogeneous multiaquifer systems[J].Water Resources Research,1978,14(5):943—952. [4] Ungerer P,Burous J,Doligez B,et al.A 2-D model of basin petroleum by two-phase fluid flow, application to some case studies[A].In:Doligez Ed.Migration of Hydrocarbon in Sedimentary Basins[C].Paris: Editions Techniq,1987,414—455. [5] Ungerer P.Fluid flow, hydrocarbon generation and migration[J].AAPG Bull,1990,74(3):309—335. [6] Douglas Jr J,Russell T F.Numerical method for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures[J].SIAM J Numer Anal,1982,19(5):871—885. doi: 10.1137/0719063 [7] Douglas Jr J.Finite difference methods for two-phase incompressible flow in porous media[J].SIAM J Numer Anal,1983,20(4):681—696. doi: 10.1137/0720046 [8] Peaceman D W.Fandamental of Numerical Reservoir Simulation[M].Amsterdam: Elsevier, 1980. [9] Marchuk G I.Splitting and alternating direction method[A].In: Ciarlet P G, Lions J L Eds.Handbook of Numerical Analysis[C].Paris:Elesevior Science Publishers,B V, 1990, 197—460. [10] Ewing R E, Lazarov R D,Vassilev A T.Finite difference scheme for parabolic problems on a composite grids with refinement in time and space[J].SIAM J Numer Anal,1994,31(6):1605—1622. doi: 10.1137/0731083 [11] Lazarov R D, Mischev I D,Vassilevski P S. Finite volume methods for convection-diffusion problems[J].SIAM J Numer Anal,1996,33(1):31—55. doi: 10.1137/0733003 [12] 袁益让.可压缩两相驱动问题的分数步长特征差分格式[J].中国科学，A辑,1998,28(10):893—902. [13] 萨马尔斯基A A,安德烈耶夫 B B.椭圆型方程差分方法[M].北京: 科学出版社,1994. [14] 袁益让.油藏数值模拟中动边值问题的特征差分方法[J].中国科学，A辑,1994,[STHZ]. 24[STBZ]. (10):1029—1036. [15] 袁益让.强化采油数值模拟的特征差分方法和l2估计[J].中国科学，A辑,1993,23(8):801—810. [16] Hubbert M K. Entrapment of petroleum under hydrodynamic conditions[J].AAPG Bull,1953,37(8):1954—2026. [17] Dembicki H,Jr. Secondary migration of oil experiments supporting efficient movement of separate, buoyant oil phase along limited conduits[J].AAPG Bull,1989,73(8):1018—1021. [18] Calalan L. An experimental study of secondary oil migration[J].AAPG Bull,1992,76(5):638—650.
##### 计量
• 文章访问数:  2533
• HTML全文浏览量:  115
• PDF下载量:  470
• 被引次数: 0
##### 出版历程
• 收稿日期:  2004-10-18
• 修回日期:  2006-01-18
• 刊出日期:  2006-05-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈