## 留言板

 引用本文: 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ)[J]. 应用数学和力学, 2006, 27(7): 819-824.
XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 819-824.
 Citation: XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 819-824.

## 流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ)

###### 作者简介:徐鉴(1961- ),男,浙江人,教授,博士(联系人.Tel:+86-21-65981138;Fax:+86-21-65983267;E-mail:xujian@mail.tongji.edu.cn).
• 中图分类号: O322；U137.91

## Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅰ)

• 摘要: 运用牛顿法导出水平悬臂刚性输液管的非线性动力学数学模型．为了对该模型进行理论分析，通过对各个相关实际物理量的量级定性分析，给出了模型中各个物理参数的量级．在此基础上，应用多尺度法首先得到输液管自由振动模态的特征函数，利用悬臂管的边界条件给出了特征值满足的特征方程， 发现管内流体速度可以诱发第一阶模态和第二阶模态3种形式的内共振分别是3∶1、2∶1和1∶1内共振， 从理论上解释了流速诱发水平悬臂输液管系统内共振的机理．由于3∶1内共振所对应的流速最小，因此这种形式的内共振是最先出现的，也是最重要的．
•  [1] Long R H. Experimental and theoretical study of trans-verse vibration of a tube containing flowing fluid[J].Journal of Applied Mechanics,1955,77(1):65—68. [2] Handelman G H. A note on the transverse vibration of a tube containing flowing fluid[J].Quarterly of Applied Mathematics,1955,13(3):326—330. [3] Naguleswaran S, Williams C J H.Lateral vibrations of a pipe conveying a fluid[J].Journal of Mechanical Engineering Science,1968,10(2):228—238. [4] Stein R A, Torbiner W M. Vibrations of pipes containing flowing fluids[J].Journal of Applied Mechanics,1970,37(6):906—916. [5] Padoussis M P, Laithier B E. Dynamics of Timoshenko beams conveying fluid[J].Journal of Mechanical Engineering Science,1976,18(2):210—220. [6] Padoussis M P, Luu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J].Journal of Sound and Vibration,1986,106(2):311—331. [7] Lee U, Pak C H, Hong S C.The dynamics of piping system with internal unsteady flow[J].Journal of Sound and Vibration,1995,180(2):297—311. [8] Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis[J].Journal of Sound and Vibration,1977,53(4):471—503. [9] Rousselet J, Herrmann G. Dynamic behaviour of continuous cantilevered pipes conveying fluid near critical velocities[J].Journal of Applied Mechanics,1981,48(6):943—947. [10] Padoussis M P, Li G X. Pipes conveying fluid: a model dynamical problem[J].Journal of Fluid and Structures,1993,7(2):137—204. [11] 黄玉盈,邹时智,徐鉴,等.输液管的非线性振动、分叉与混沌—现状与展望[J].力学进展,1998,28(1):30—42. [12] 徐鉴，杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):1—13. [13] Semler C,Li X, Padoussis M P.The non-linear equations of motion of pipes conveying fluid[J].Journal of Sound and Vibration,1994,169(3):577—599. [14] Padoussis M P.Fluid-Structure Interactions: Slender Structures and Axial Flow[M].San Diego: Academic Press, 1998. [15] Ryu S U, Sugiyama Y, Ryu B J. Eigenvalue branches and modes for flutter of cantileverd pipes conveying fluid[J].Computers and Structures,2002,80(14/15):1231—1241. [16] Seyranian A P. Collision of eigenvalues in linear oscillatory systems[J].PMM-Journal of Applied Mathematics and Mechanics,1994,58(5):805—13. [17] XU Jian,CHUNG Kwow-wai,CHAN HENRY Shui-ying.Co-dimension 2 bifurcation and chaos in cantilevered pipe conveying time varying fluid with three-to-one in internal resonances[J].Acta Mechanics Solid Sinica,2003,6(3)：245—255. [18] 徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J].应用数学和力学,2006,27(7):825—832.

##### 计量
• 文章访问数:  2699
• HTML全文浏览量:  119
• PDF下载量:  746
• 被引次数: 0
##### 出版历程
• 收稿日期:  2004-05-25
• 修回日期:  2006-03-01
• 刊出日期:  2006-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈