留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)

徐鉴 杨前彪

徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J]. 应用数学和力学, 2006, 27(7): 825-832.
引用本文: 徐鉴, 杨前彪. 流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J]. 应用数学和力学, 2006, 27(7): 825-832.
XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅱ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 825-832.
Citation: XU Jian, YANG Qian-biao. Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅱ)[J]. Applied Mathematics and Mechanics, 2006, 27(7): 825-832.

流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)

基金项目: 国家自然科学基金资助项目(10472083);国家自然科学基金(重点)资助项目(10532050)
详细信息
    作者简介:

    徐鉴(1961- ),男,浙江人,教授,博士(联系人.Tel:+86-21-65981138;Fax:+86-21-65983267;E-mail:xujian@mail.tongji.edu.cn).

  • 中图分类号: O322;U137.91

Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅱ)

  • 摘要: 基于得到的水平悬臂输液管非线性动力学控制方程,详细研究了由流速最小临界值诱发的3∶1内共振.通过观察内共振调谐参数、主共振调谐参数和外激励幅值的变化,发现在内共振临界流速附近,流速导致系统出现模态转换、鞍结分岔、Hopf分岔、余维2分岔和倍周期分岔等非线性动力学行为,对应的管道系统的周期运动失稳出现跳跃、颤振和更加复杂的动力学行为.通过理论结果与数值模拟比较,表明了理论分析的有效性和正确性.
  • [1] 徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅰ)[J].应用数学和力学,2006,27(7):819—824.
    [2] Nayfeh A H,Mook D T.Nonlinear Oscillations[M].New York:Wiley,1979,444—544.
    [3] Long R H. Experimental and theoretical study of trans verse vibration of a tube containing flowing fluid[J].Journal of Applied Mechanics,1955,77(1):65—68.
    [4] Handelman G H.A note on the transverse vibration of a tube containing flowing fluid[J].Quarterly of Applied Mathematics,1955,13(3):326—330.
    [5] Naguleswaran S, Williams C J H.Lateral vibrations of a pipe conveying a fluid[J].Journal of Mechanical Engineering Science,1968,10(2):228—238. doi: 10.1243/JMES_JOUR_1968_010_035_02
    [6] Stein R A, Torbiner W M.Vibrations of pipes containing flowing fluids[J].Journal of Applied Mechanics,1970,37(6):906—916. doi: 10.1115/1.3408717
    [7] Padoussis M P,Laithier B E. Dynamics of Timoshenko beams conveying fluid[J].Journal of Mechanical Engineering Science,1976,18(2):210—220. doi: 10.1243/JMES_JOUR_1976_018_034_02
    [8] Padoussis M P,Lu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J].Journal of Sound and Vibration,1986,106(2):311—331. doi: 10.1016/0022-460X(86)90321-4
    [9] Lee U, Pak C H,Hong S C. The dynamics of piping system with internal unsteady flow[J].Journal of Sound and Vibration,1995,180(2):297—311. doi: 10.1006/jsvi.1995.0080
    [10] Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis[J].Journal of Sound and Vibration,1977,53(4):471—503. doi: 10.1016/0022-460X(77)90521-1
    [11] Rousselet J, Herrmann G. Dynamic behaviour of continuous cantilevered pipes conveying fluid near critical velocities[J].Journal of Applied Mechanics,1981,48(6):943—947. doi: 10.1115/1.3157760
    [12] Padoussis M P, Li G X. Pipes conveying fluid: a model dynamical problem[J].Journal of Fluid and Structures,1993,7(2):137—204. doi: 10.1006/jfls.1993.1011
    [13] Semler C, Li X,Padoussis M P. The non-linear equations of motion of pipes conveying fluid[J].Journal of Sound and Vibration,1994,169(3):577—599. doi: 10.1006/jsvi.1994.1035
    [14] Padoussis M P.Fluid-Structure Interactions: Slender Structures and Axial Flow[M].San Diego: Academic Press, 1998,415—430.
    [15] XU Jian,CHUANG Kwow-wai,CHAN Henry Shui-ying.Co-dimension 2 bifurcation and chaos in cantilevered pipe conveying time varying fluid with three-to-one in internal resonances[J].Acta Mechanics Solid Sinica,2003,6(3):245—255.
  • 加载中
计量
  • 文章访问数:  2481
  • HTML全文浏览量:  56
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2004-05-25
  • 修回日期:  2006-03-01
  • 刊出日期:  2006-07-15

目录

    /

    返回文章
    返回