## 留言板

 引用本文: 郭辉, 郭兴明. 考虑晶粒几何形状的尺度效应[J]. 应用数学和力学, 2007, 28(2): 127-134.
GUO Hui, GUO Xing-ming. Scale Effect and the Geometric Shapes of Grains[J]. Applied Mathematics and Mechanics, 2007, 28(2): 127-134.
 Citation: GUO Hui, GUO Xing-ming. Scale Effect and the Geometric Shapes of Grains[J]. Applied Mathematics and Mechanics, 2007, 28(2): 127-134.

## 考虑晶粒几何形状的尺度效应

###### 作者简介:郭兴明(联系人.E-mail:xmguo@mail.shu.edu.cn).
• 中图分类号: TB383；TG115.5

## Scale Effect and the Geometric Shapes of Grains

• 摘要: 复合材料方法中的混合律方法在研究纳米晶体材料力学性能时得到了广泛的使用,准确得出各相的体积分数对该方法结果的准确性具有十分重要的影响．将纳米晶体看成由晶界、晶粒和三叉晶三相组成的复合材料,根据晶粒具有多面体的几何特点,用二维的三相复合的正多边形模型来研究纳米晶体力学性能的尺度效应,对于不同几何形状的晶粒采用对应的正多边形模型,这样我们就可以更加准确地得到各相的体积分数,从而更好地预测纳米晶体材料的力学性能．
•  [1] Hall E O.The deformation and aging of mild steel:Ⅲ discussion of results[J].Proc Phys Soc B,1951,64(1)：747-753. [2] Petch N J. The cleavage strength of polycrystals[J].J Iron Steel Inst,1953,174(5):25-28. [3] Gleiter H. Nanocrystalline materials[J].Prog Mater Sci,1989,33(4):223-315. [4] Nieman G W, Weertman J R, Siegel R W. Microhardness of nanocrystalline palladium and copper produced by inert-gas condensation[J].Scripta Metall,1989,23(13):2013-2018. [5] Palumbo G, Erb U, Aust K T. Triple line disclination effects on the mechanical behaviour of materials[J].Scripta Metall Mater,1990,24(12):2347-2350. [6] Lu K.Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties[J].Mater Sci Eng R,1996,16:161-221. [7] Mallow T R, Koch C C. Grain growth in nanocrystalline iron prepared by mechanical attrition[J].Acta Mater,1997，45(5):2177-2186. [8] Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium[J].Acta Mater,1997,45(10):4019-4025. [9] Masumura R A, Hazzledine P M, Pande C S. Yield stress of fine grained materials[J].Acta Mater,1998,46(13):4527-4534. [10] Yamakov V, Wolf D, Phillpot S R,et al.Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation[J].Acta Mater,2002,50(1):61-73. [11] Seattergood R O, Koch C C. A modified model for hall-petch behavior in nanocrystalline materials[J].Scripta Mater,1992,27(9):1195-1200. [12] Hahn H, Padmanabhan K A. A model for the deformation of nanocrystalline materials[J].Philosophical Magazine B,1997,76(44):559-571. [13] Fedorov A A, Gutkin M Yu, Ovid'ko I A. Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials[J].Acta Mater,2003,51(4):887-898. [14] Fedorov A A, Gutkin M Yu,Ovid'ko I A. Triple junction diffusion and plastic flow in fine-grained materials[J].Scripta Mater,2002,47(1):51-55. [15] Gutkin M Yu, Kolesnikova A L, Ovid'ko I A,et al.Disclinations and rotational deformation in fine-grained materials [J].Phil Mag Lett,2002,82(12):651-657. [16] Ovid'ko I A.Materials science: deformation of nanostructures[J].Science,2002,295(2395):2386-2386. [17] Gutkin M Yu, Ovid'ko I A. Yield stress of nanocrystalline materials: role of grain grainboundary dislocations, triple junctions and coble creep[J].Philosophical Magazine,2004,84(9):847-863. [18] Kocks U F. Relation between polycrystal deformation and single-crystal deformation[J].Metal Trans,1970,1(55):1121-1143. [19] Carsley J E, Ning J, Milligan W W,et al.A simple, mixtures-based model for the grain size dependence of strength in nanophase metals[J].Nanostruct Mater,1995,5(4):441-448. [20] Konstantinidis D A, Aifantis E C. On the “anomalous” hardness of nanocrystalline materials[J].Nanostruct Mater,1998,10(7):1111-1118. [21] Benson David J,FU Hsueh-hung, Meyers Marc Andre′. On the effect of grain size on yield stress: extension into nanocrystalline domain[J].Mat Sci Eng A,2001,319/321:854-861. [22] Song H W, Guo S R, Hu Z Q. A coherent polycrystal model for the inverse Hall-Petch relation in nanocrystalline materials[J].Nanostruct Mater,1999,11(2):203-210. [23] XIANG Qing,GUO Xing-ming. The scale effect on the yield strength of nanocrystalline materials[J].Internat J Solids and Structures,2006,43(9):7793-7799. [24] Wang N, Wang Z,Aust K T,et al.Effect of grain size on mechanical properties of nanocrystalline materials[J].Acta Metal Mater,1995,43(2):519-528. [25] Kim H S. A composite model for mechanical properties of nanocrystalline materials[J].Scripta Mater,1998,39(8):1057-1061. [26] Kim H S, Bush M B.The effects of grain size and porosity on the elastic modulus of nanocrystalline materials[J].Nanostruct Mater,1999,11(3):361-367. [27] Kim H S, Estrin Y,Bush M B. Plastic deformation behaviour of fine-grained materials[J].Acta Mater,2000,48(2):493-504. [28] Kim H S, Estrin Y. Phase mixture modeling of the strain rate dependent mechanical behavior of nanostructured materials[J].Acta Mater,2005,53(3):765-772. [29] Gutkin M Yu, Ovid'ko I A, Pande C S. Theoretical models of plastic deformation process in nanocrystalline materials[J].Rev Adv Mater Sci,2001,2(1):80-102. [30] Tjong S C, Chen Haydn. Nanocrystalline materials and coating[J].Math Sci Engrg R,2004,45(1):1-88. [31] Zhou Y, Erb U, Aust K T,et al.The effects of triple junctions and grain boundaries on hardness and Young's modulus in nanostructured Ni-P[J].Scripta Mater,2003,48(6):825-830. [32] Zhao M, Li J C,Jiang Q,et al.Hall-Petch relationship in nanometer size range[J].J Alloy Compd,2003,361(1/2):160-164.

##### 计量
• 文章访问数:  2581
• HTML全文浏览量:  70
• PDF下载量:  735
• 被引次数: 0
##### 出版历程
• 收稿日期:  2006-07-10
• 修回日期:  2006-12-07
• 刊出日期:  2007-02-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈