## 留言板

 引用本文: 徐春晖, 秦太验, 野田尚昭. 双材料接合半无限体三维矩形界面裂纹应力强度因子分析[J]. 应用数学和力学, 2007, 28(6): 668-674.
XU Chun-hui, QIN Tai-yan, NODA Nao-Aki. Numerical Solutions of Singular Integral Equations for Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 668-674.
 Citation: XU Chun-hui, QIN Tai-yan, NODA Nao-Aki. Numerical Solutions of Singular Integral Equations for Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 668-674.

## 双材料接合半无限体三维矩形界面裂纹应力强度因子分析

###### 作者简介:徐春晖(1971- ),女,副教授,博士(Tel:+86O10O62736992;E-mail:xuchunhui-cau@163.com);秦太验(联系人.Tel:+86-10-62736992;E-mail:tyqin@cau.edu.cn).
• 中图分类号: O346.1

## Numerical Solutions of Singular Integral Equations for Planar Rectangular Interfacial Crack in Three Dimensional Bimaterials

• 摘要: 基于体积力法，研究了双材料接合半无限体三维矩形界面裂纹的应力强度因子问题．在数值计算中，未知的体积力密度采用基本密度函数和多项式乘积的形式来近似，其中基本密度函数是根据界面裂纹应力的振荡奇异性来选取的．计算结果表明，基于本算法得到的数值结果其收敛精度和计算误差都是令人满意的．算例中，给出了应力强度因子随矩形形状及双材料参数的变化规律．
•  [1] Salganik R L.The brittle fracture of cemented bodies[J].Prikl Mat Mekh,1963,27：957-962. [2] Erdogan F.Stresses distribution in a non-homogeneous elastic plane with crack[J].J Appl Mech,1963,3(2)：232-236. [3] England F.A crack between dissimilar media[J].J Appl Mech,1965,32(3)：400-402. [4] Rice J R,Sih G C.Plane problems of cracks in dissimilar media[J].J Appl Mech,1965,32(3)：418-423. [5] Comninou M.The interface crack[J].J Appl Mech,1977,44(4)：631-636. [6] Noda N A,Oda K.Interaction effect of stress intensity factors for any number of collinear interface cracks[J].Internat J Fracture,1997,84(2)：117-128. [7] Willis J R.Fracture mechanics of interfacial crack[J].J Mech Phys Solids,1971,19(6)：353-368. [8] Tucker M O.In two-phase solids under longitudinal shear loading[J].Internat J Fracture,1974,10(3)：323-336. [9] England F,Gupta G D.Bonded wedges with an interface crack under anti-plane shear loading[J].Internat J Fracture,1975,11(4)：593-593. [10] Willis J R.The penny-shaped crack on an interface[J].J Mech Appl Math,1972,25(2)：367-385. [11] Mossakovski V I,Rybka M T.Generalization of the griffith-senddon criterion for the case of a non-homogeneous body[J].Prikl Mat Mekh,1964,28：1061-1069. [12] England F.Stress distribution in bonded dissimilar materials containing circular or ring-shaped cavities[J].Trans ASME, Ser E, J Appl Mech,1965,32(4)：829-836. [13] Kassir M K,Bregman A M.The stress intensity factor for a penny-shaped crack between two dissimilar materials[J].Trans ASME, Ser E, J Appl Mech,1972,39(1)：308-310. [14] Lowengrub M,Senddon I N.The effect of internal pressure on a penny-shaped crack at the interface of two bonded dissimilar elastic half-spaces[J].Internat J Engng Sci,1974,12(5)：387-396. [15] Shibuya T,Koizumi T,Iwamoto T.Stress analysis of the vicinity　of　an　elliptical crack at the interface of two bonded half-spaces[J].JSME Internat J,1989,32：485-491. [16] Noda N A,Kakita M,Chen M C.Analysis of stress intensity factors of a ring-shaped interface crack[J].Internat J Solids and Structures,2003,40(24)：6577-6592. [17] WANG Qing，Noda N A.Variation of stress intensity factors along the front of 3d rectangular crack by using a singular integral equation method[J].Internat J Fracture,2001,108(2)：119-131. [18] Chen M C,Noda N A,Tang R J.Application of finite-part integrals to planar interfacial fracture problems in three dimensional bimaterials[J].J Appl Mech,1999,66(6)：885-890. [19] Qin T Y,Noda N A.Stress intensity factors of rectangular crack meeting a bimateral interface[J].Internat J Solids and Structures,2003,40(10)：2473-2486.
##### 计量
• 文章访问数:  2926
• HTML全文浏览量:  107
• PDF下载量:  557
• 被引次数: 0
##### 出版历程
• 收稿日期:  2006-10-20
• 修回日期:  2007-03-12
• 刊出日期:  2007-06-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈