留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

由一类非线性常微分方程的抛物线解所确定的扭波

李继彬 黎明 纳静

李继彬, 黎明, 纳静. 由一类非线性常微分方程的抛物线解所确定的扭波[J]. 应用数学和力学, 2007, 28(7): 789-797.
引用本文: 李继彬, 黎明, 纳静. 由一类非线性常微分方程的抛物线解所确定的扭波[J]. 应用数学和力学, 2007, 28(7): 789-797.
LI Ji-bin, LI Ming, NA Jing. Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 789-797.
Citation: LI Ji-bin, LI Ming, NA Jing. Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 789-797.

由一类非线性常微分方程的抛物线解所确定的扭波

基金项目: 国家自然科学基金资助项目(10231020);云南省自然科学基金资助项目(2003A0018M)
详细信息
    作者简介:

    李继彬(1943- ),男,云南人,教授,博士生导师(联系人.Tel:+86-871-5171274;E-mail:lijb@zjnu.cn).

  • 中图分类号: O175.12

Kink Wave Determined by a Parabola Solution of a Nonlinear Ordinary Differential Equation

  • 摘要: 通过求解与平面动力系统的两个平衡点相连接的抛物线解,获得了6种非线性行波方程的扭波解存在条件,并给出了这些扭波解的参数表达式,以及上述解存在的参数条件.
  • [1] FAN En-gui.Uniformly constructing a series of explict exact solutions to nonlinear equations in mathematical physics[J].Chaos,Solitons and Fractals,2003,16:819-839. doi: 10.1016/S0960-0779(02)00472-1
    [2] LI Ji-bin,CHEN Guang-rong.Bifurcations of travelling wave solutions for four classes of nonlinear wave equations[J].Internat J Bifucation and Chaos,2005,15(12):3973-3998. doi: 10.1142/S0218127405014416
    [3] ZHANG Wei-guo,CHANG Qian-shun,JIANG Bao-guo.Explict exact solitary-wave solutions for compound KdV-type and compound KdV-Burgers equations with nolinear terms of any order[J].Chaos Solitons and Fractals,2002,13:311-319. doi: 10.1016/S0960-0779(00)00272-1
    [4] Parkes E J,Duffy B R.Travelling wave solutions to a compound KdV-Burgers equation[J].Phys Letter A,1997,229(4):217-220. doi: 10.1016/S0375-9601(97)00193-X
    [5] FENG Zhao-sheng.A note on “Explict exact solutions to the compound KdV equation”[J].Phys Letter A,2003,312:65-71. doi: 10.1016/S0375-9601(03)00617-0
    [6] LI Biao,CHEN Yong,ZHANG Hong-qing.Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation[J].Appl Math Comput,2003,146(2):653-666. doi: 10.1016/S0096-3003(02)00610-0
    [7] LI Biao,CHEN Yong,ZHANG Hong-qing.Explict exact solutions for some nolinear partial differential equations with nonlinear terms of any order[J].Czech J Phys,2003,53:283-295. doi: 10.1023/A:1023488209337
    [8] LIU Chun-ping.Exact analytical solutions for nonlinear reaction-diffusion equations[J].Chaos Solitons and Fractals,2003,18:97-105. doi: 10.1016/S0960-0779(02)00590-8
    [9] Wan X Y,Zhu Z S,Lu Y K.Solitary wave solutions of the generalized Burgers-Huxley equation[J].J Phys A:Math Gen,1990,23:271-274. doi: 10.1088/0305-4470/23/3/011
    [10] Chow S N,Hale J K.Method of Bifurcation Theory[M].New York:Springer-Verlag,1981.
  • 加载中
计量
  • 文章访问数:  2211
  • HTML全文浏览量:  32
  • PDF下载量:  742
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-01-16
  • 修回日期:  2007-04-04
  • 刊出日期:  2007-07-15

目录

    /

    返回文章
    返回