留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

加权Cebysev-Ostrowski 型不等式

A·拉费克 N·A·密尔 F·阿马德

A·拉费克, N·A·密尔, F·阿马德. 加权Cebysev-Ostrowski 型不等式[J]. 应用数学和力学, 2007, 28(7): 805-810.
引用本文: A·拉费克, N·A·密尔, F·阿马德. 加权Cebysev-Ostrowski 型不等式[J]. 应用数学和力学, 2007, 28(7): 805-810.
Arif Rafiq, Nazir Ahmad Mir, Farooq Ahmad. Weighted ?eby》ev-Ostrowski Type Inequalities Involving Functions Whose First Derivatives Belong to a Spaces of the Functions[J]. Applied Mathematics and Mechanics, 2007, 28(7): 805-810.
Citation: Arif Rafiq, Nazir Ahmad Mir, Farooq Ahmad. Weighted ?eby》ev-Ostrowski Type Inequalities Involving Functions Whose First Derivatives Belong to a Spaces of the Functions[J]. Applied Mathematics and Mechanics, 2007, 28(7): 805-810.

加权Cebysev-Ostrowski 型不等式

详细信息
  • 中图分类号: O178

Weighted ?eby》ev-Ostrowski Type Inequalities Involving Functions Whose First Derivatives Belong to a Spaces of the Functions

  • 摘要: 关于著名的ebyev不等式,已有众多的研究成果.通过建立积分不等式,来建立全新的加权ebyev型积分不等式.给予了独立的证明,并给出了此类不等式的新评价.
  • [1] ebyev P L. Sur les expressions approximatives des integrals par les auters prises entre les memes limites[J].Proc Math Soc Charkov,1882,2:93-98.
    [2] Pecaric J E, Porchan F, Tong Y.Convex Functions, Partial Orderings and Statistical Applications[M]. San Diego: Academic Press, 1992.
    [3] Dragomir S S , Rassias Th M.Ostrowski Type Inequalities and Applications in Numerical Integration[M].USA:Springer, 2002, 504.
    [4] Heing H P, Maligranda L.ebyev inequality in function spaces[J].Real Analysis Exchange,1991/1992,17(1):211-247.
    [5] Kwong M K, Zettl A.Norm Inequalities for Derivatives and Difference[M].New York/Berlin : Springer -Verlag,1980.
    [6] Mitrinovic D S, Pecaric J E, Fink A M.Classical and New Inequalities in Analysis[M]. Dordrecht: Kluwer Academic Publishers, 1993.
    [7] Pachpatte B G. On Trapezoid and Gruss like integral inequalities[J].Tamkang J Math,2003,34(4):365-369.
    [8] Pachpatte B G. On Ostrowski-Grüss-ebyev type inequalities for functions whose modulus of derivatives are convex[J].J Inequal Pure Appl Math,2005,6(4):128.
    [9] Pachpatte B G. On ebyev type inequalities involving functions whose derivatives belong to Lp spaces[J].J Inequal Pure Appl Math,2006,7(2): 58.
    [10] Varosanec S. History, generalizations and applied unified treatments of two Ostrowski inequalities[J].J Inequal Pure Appl Math,2004,5(2):23.
    [11] Dragomir S S. On simpson's quadrature formula for differentiable mappings whose derivatives belong to Lp spaces and applications[J].RGMIA Res Rep Coll,1998,1(2):89-96.
    [12] Dragomir S S, Barnett N S. An ostrowski type inequality for mappings whose second derivatives are bounded and applications[J].RGMIA Res Rep Coll,1998,1(2):69-77.
    [13] Dragomir S S, Wang S. A new inequality of Ostrowski's type in Lp norm[J].Indian J Math,1998,40(3):299-304.
    [14] Mitrinovic D S,Pecaric J E, Fink A M.Inequalities Involving Functions and Their Integrals and Derivatives[M].Dordrecht: Kluwer Academic Publishers, 1991.
  • 加载中
计量
  • 文章访问数:  2080
  • HTML全文浏览量:  39
  • PDF下载量:  672
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-08-17
  • 修回日期:  2007-03-16
  • 刊出日期:  2007-07-15

目录

    /

    返回文章
    返回