## 留言板

 引用本文: 曲富丽, 王文洽. 三阶非线性KdV方程的交替分段显-隐差分格式[J]. 应用数学和力学, 2007, 28(7): 869-876.
QU Fu-li, WANG Wen-qia. Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 869-876.
 Citation: QU Fu-li, WANG Wen-qia. Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation[J]. Applied Mathematics and Mechanics, 2007, 28(7): 869-876.

• 中图分类号: O241

## Alternating Segment Explicit-Implicit Scheme for Nonlinear Third-Order KdV Equation

• 摘要: 对三阶非线性KdV方程给出了一组非对称的差分公式，用这些差分公式与显、隐差分公式组合，构造了一类具有本性并行的交替分段显-隐格式A·D2证明了格式的线性绝对稳定性．对1个孤立波解、2个孤立波解的情况分别进行了数值试验．数值结果显示，交替分段显-隐格式稳定，有较高的精确度．
•  [1] 杨伯君,赵玉芳.高等数学物理方法[M].北京: 北京邮电大学出版社,2003. [2] Zabusky N J,Kruskal M D.Interaction of “solitions” in a collisionless plasma and the recurrence of initial states[J].Physical Rev Lett,1965,15(6):240-243. [3] Osborne A R.Nonlinear fourier analysis for the infinite-interval Korteweg-de Vries equation Ⅰ:An algorithm for direct scattering transform[J].J Comput Phys,1991,94(2):284-313. [4] 彭点云. KdV方程的多点格式方法[J].数值计算与计算机应用,1998，19(4): 241-251. [5] Djidjeli K, Price W G,Twizell E H,et al.Numerical methods for the solution of the third-and fifth-order dispersive Korteweg-de Vries equations[J].J Comput Appl Math,1995,58(3):307-336. [6] FENG Bao-feng,Taketomo Mitsui.A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations[J].J Comput Appl Math,1998,90(1):95-116. [7] Evans D J,Abdullah A R B. Group explicit methods for parabolic equations[J].Intern J Comput Math,1983,14(1):73-105. [8] ZHANG Bao-lin,LI Wen-zhi.On alternating segment Crank-Nicolson scheme[J].Parallel Computing,1994,20(6):897-902. [9] YUAN Guang-wei,SHEN Long-jun,ZHOU Yu-lin.Unconditional stability of alternating difference schemes with intrinsic parallelism for two-dimensional parabolic systems[J]. Inc Numer Methods Partial Diffential Eq,1999,15(6):25-636. [10] ZHU Shao-hong,Zhao J.The alternating segment explicit-implicit method for the dispersive equation[J].Applied Mathematics Letters,2001,14(6):657-662. [11] 朱少红,袁光伟.色散方程的一类本性并行的差分格式[J].应用数学学报，2003,26(3):495-503. [12] Kellogg R B.An alternating direction method for operator equations[J].J Soc Indust Appl Math,1964,12(4):848-854. doi: 10.1137/0112072 [13] LI Ping-wah.On the numerical study of the KdV equation by the semi-implicit and leaap-frog method[J]. Computer Physics Communications,1995,88(2/3):121-127. [14] Djidjeli K,Price W G,Temarel P,et al.Alinerized implicit pseudo-spectral method for certain non-linear water wave qeuations[J].Commun Numer Meth Engng,1998,14(10):977-993.

##### 计量
• 文章访问数:  2398
• HTML全文浏览量:  30
• PDF下载量:  911
• 被引次数: 0
##### 出版历程
• 收稿日期:  2006-02-14
• 修回日期:  2007-04-16
• 刊出日期:  2007-07-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈