## 留言板

Gauss色噪声激励下含黏弹力摩擦系统的随机响应分析

 引用本文: 孙娇娇, 徐伟, 林子飞, 周杨. Gauss色噪声激励下含黏弹力摩擦系统的随机响应分析[J]. 应用数学和力学, 2017, 38(1): 109-117.
SUN Jiao-jiao, XU Wei, LIN Zi-fei, ZHOU Yang. Random Responses Analysis of Friction Systems With Viscoelastic Forces Under Gaussian Colored Noise Excitation[J]. Applied Mathematics and Mechanics, 2017, 38(1): 109-117. doi: 10.21656/1000-0887.370519
 Citation: SUN Jiao-jiao, XU Wei, LIN Zi-fei, ZHOU Yang. Random Responses Analysis of Friction Systems With Viscoelastic Forces Under Gaussian Colored Noise Excitation[J]. Applied Mathematics and Mechanics, 2017, 38(1): 109-117.

• 中图分类号: O324

## Random Responses Analysis of Friction Systems With Viscoelastic Forces Under Gaussian Colored Noise Excitation

Funds: The National Natural Science Foundation of China（11532011；11472212）
• 摘要: 研究了Gauss色噪声激励下含黏弹力、弱非线性阻尼的摩擦振子的随机响应.将适用于光滑系统的随机平均法推广到了非光滑摩擦系统,进而得到系统振幅、位移及速度的稳态概率密度函数.同时结合材料的黏弹性,研究了摩擦力和Gauss色噪声对系统响应的影响.研究表明,摩擦力、黏弹力及噪声项的相关参数均可引起随机P-分岔,并且在一定范围内系统响应对摩擦力极为敏感.此外,理论结果与Monte Carlo 模拟结果吻合较好,验证了方法的有效性.
•  [1] Berger E J. Friction modeling for dynamic system simulation[J]. Applied Mechanics Reviews，2002,55(6): 535-577. [2] 刘丽兰, 刘宏昭, 吴子英, 等. 机械系统中摩擦模型的研究进展[J]. 力学进展, 2008,38(2): 201-211.(LIU Li-lan, LIU Hong-zhao, WU Zi-ying, et al. An overview of friction models in mechanical systems[J]. Advances in Mechanics,2008,38(2): 201-211.(in Chinese)) [3] Den Hartog J P. Forced vibration with combined Coulomb and viscous damping[J]. Transactions of the American Society of Mechanical Engineering,1931,53: 107-115. [4] Wiercigroch M, de Kraker B.Applied Nonlinear Dynamics and Chaos of Mechanical Systems With Discontinuities[M]//World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. Vol28. Wiercigroch M, de Kraker B, ed. World Scientific Publishing Co Inc, 2000. [5] Wriggers P, Nackenhorst U.Analysis and Simulation of Contact Problems [M]. Berlin, Heidelberg: Springer-Verlag, 2006. [6] May R M. Simple mathematical models with very complicated dynamics[J]. Nature, 1976,261: 459-467. [7] Moon F C, Shaw S W. Chaotic vibrations of a beam with non-linear boundary conditions[J]. International Journal of Non-Linear Mechanics,1983,18(6): 465-477. [8] Paidoussis M P, Moon F C. Nonlinear and fluidelastic vibrations of a flexible pipe conveying fluid[J]. Journal of Fluids and Structures,1988,2(6): 567-591. [9] Divenyi S M, Savi A, Wiercigroch M, et al. Drill-string vibration analysis using non-smooth dynamics approach[J].Nonlinear Dynamics,2012,70(2): 1017-1035. [10] Berger E J, Mackin T J. On the walking stick-slip problem[J]. Tribology International,2014,75: 51-60. [11] Brouwers J J H. Response near resonance of non-linearly damped systems subjected to random excitations with application to marine risers[J]. Ocean Engineering,1982,9(3): 235-257. [12] SUN Jian-qiao. Random vibration analysis of a nonlinear system with dry friction damping by the short-time Gaussian cell mapping method[J]. Journal of Sound and Vibration, 1995,180(5): 785-795. [13] 冯奇, 张相庭. 单自由度摩擦系统离散模型[J]. 应用数学和力学, 2001,22(8): 853-861.（FENG Qi, ZHANG Xiang-ting. The discrete models on a frictional single degree of freedom system[J]. Applied Mathematics and Mechanics,2001,22(8): 853-861.(in Chinese)） [14] Gaus N, Proppe C. Bifurcation Analysis of Stochastic Non-Smooth Systems [M]// IUTAM Symposium on Nonlinear Stochastic Dynamics and Control.Springer Netherlands, 2011: 201-209. [15] TIAN Yong-pi, WANG Yong, JIN Xiao-ling, et al. Optimal load resistance of randomly excited nonlinear electromagnetic energy harvester with Coulomb friction[J].Smart Materials and Structures,2014,23(9): 95001-95012. [16] Ariaratnam S T. Stochastic stability of linear viscoelastic systems[J]. Probabilistic Engineering Mechanics,1993,8(3/4): 153-155. [17] CAI Guo-qiang, Lin Y K, XU Wei. Visco-elastic systems under both additive and multiplicative random excitations[M]//Computational Stochastic Mechanics.Rotterdam, Netherlands, 1998: 411-416. [18] ZHU Wei-qiu, CAI Guo-qiang. Random vibration of viscoelastic system under broad-band excitations[J].International Journal of Non-Linear Mechanics,2011,46(5): 720-726. [19] ZHAO Xiang-rong, XU Wei, GU Xu-dong, et al. Stochastic stationary responses of a viscoelastic system with impacts under additive Gaussian white noise excitation[J]. Physica A: Statistical Mechanics and Its Applications,2015,431: 128-139. [20] Christensen R M.Theory of Viscoelasticity: An Introduction [M]. 2nd ed. New York: Academic Press, 1982. [21] LIU Zhong-hua, ZHU Wei-qiu. Stochastic averaging of quasi-integrable Hamiltonian systems with delayed feedback control[J].Journal of Sound and Vibration, 2007,299: 178-195. [22] Roberts J B. Stationary response of oscillators with nonlinear damping to random excitation [J]. Journal of Sound and Vibration,1976,50(1): 145-156. [23] Honeycutt R L. Stochastic Runge-Kutta algorithms II. Colored noise[J].Phys Rev A,1992,45(2): 604-610.

##### 计量
• 文章访问数:  770
• HTML全文浏览量:  63
• PDF下载量:  657
• 被引次数: 0
##### 出版历程
• 收稿日期:  2016-06-28
• 刊出日期:  2017-01-15

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈