留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微分思想的层合材料传热问题新解法

李细霞 戴海燕 李长玉

李细霞, 戴海燕, 李长玉. 基于微分思想的层合材料传热问题新解法[J]. 应用数学和力学, 2018, 39(6): 728-736. doi: 10.21656/1000-0887.380116
引用本文: 李细霞, 戴海燕, 李长玉. 基于微分思想的层合材料传热问题新解法[J]. 应用数学和力学, 2018, 39(6): 728-736. doi: 10.21656/1000-0887.380116
LI Xixia, DAI Haiyan, LI Changyu. A New Method for Solving Heat Transfer Problems of Laminate Materials Based on the Differential Theory[J]. Applied Mathematics and Mechanics, 2018, 39(6): 728-736. doi: 10.21656/1000-0887.380116
Citation: LI Xixia, DAI Haiyan, LI Changyu. A New Method for Solving Heat Transfer Problems of Laminate Materials Based on the Differential Theory[J]. Applied Mathematics and Mechanics, 2018, 39(6): 728-736. doi: 10.21656/1000-0887.380116

基于微分思想的层合材料传热问题新解法

doi: 10.21656/1000-0887.380116
基金项目: 广东省青年创新类人才项目基金(2016KQNCX226)
详细信息
    作者简介:

    李细霞(1982—),女,讲师,硕士(Tel: +862036903124;E-mail: lixx@gcu.edu.cn);李长玉(1981—),男,副教授,博士(通讯作者. E-mail: licy@gcu.edu.cn).

  • 中图分类号: O343.2

A New Method for Solving Heat Transfer Problems of Laminate Materials Based on the Differential Theory

  • 摘要: 基于微分思想提出了一种针对层合材料传热问题的新解法.将层合材料交界处的温度随时间变化的曲线在微小时间段内近似为直线,用分离变量法求得了在微小时间段内各层包含未知系数的解析解,根据交界处能量连续的条件求得各层解析解中的未知系数,然后循环求得整个时间域内的温度场.最后利用此方法求解了某三层结构的传热问题,将计算结果与有限元法求得的结果进行了比较,讨论了几个参数对温度场的影响,从而进一步验证了方法的正确性.
  • [1] WANG B L, CUI Y J. Transient inter laminar thermal stress in multi-layered thermoelectric materials[J]. Applied Thermal Engineering,2017(2): 55-67.
    [2] KUMAR D, KUMAR P, RAI K N. A study on DPL model of heat transfer in bi-layer tissues during MFH treatment[J]. Computers in Biology & Medicine,2016,75(2): 160-172.
    [3] MATSUMOTO N, OKUNO T, OBARA H, et al. Multi-layer heat conduction analysis using SPH method[J]. Transactions of the Japan Society of Mechanical Engineers,2016,82(3): 77-82.
    [4] LU S, LIU J, LIN G, et al. Modified scaled boundary finite element analysis of 3D steady-state heat conduction in anisotropic layered media[J]. International Journal of Heat & Mass Transfer,2017,108(1): 2462-2471.
    [5] 刘芳, 施卫平. 用格子Boltzmann方法模拟非线性热传导方程[J]. 应用数学和力学, 2015,36(11): 1158-1166.(LIU Fang, SHI Weiping. Simulation of the nonlinear heat conduction equation with the lattice Boltzmann method[J]. Applied Mathematics and Mechanics,2015,36(11): 1158-1166.(in Chinese))
    [6] 詹涌强, 张传林. 解抛物型方程的一族高精度隐式差分格式[J]. 应用数学和力学, 2014,35(7): 790-797.(ZHAN Yongqiang , ZHANG Chuanlin. A family of high accuracy implicit difference schemes for solving parabolic equations[J]. Applied Mathematics and Mechanics,2014,35(7): 790-797.(in Chinese))
    [7] 盛宏玉, 李和平, 叶建乔, 等. 介质热传导瞬态分析的一种新半数值解法[J]. 合肥工业大学学报(自然科学版), 2010,33(5): 709-712.(SHENG Hongyu, LI Heping, YE Jianqiao, et al. A new semi-numerical approach for the transient heat conduction analysis of laminated medium[J]. Journal of Hefei University of Technology(Natural Science),2010,33(5): 709-712.(in Chinese))
    [8] 蓝林华, 富明慧, 刘祚秋. 结构瞬态热传导方程的一种精细解法[J]. 中山大学学报(自然科学版), 2011,50(5): 1-6.(LAN Linhua, FU Minghui, LIU Zuoqiu. A precise solution of transient heat conduction equation for laminate structure[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2011,50(5): 1-6.(in Chinese))
    [9] 李金娥, 王保林, 常冬梅. 材料的非傅里叶热传导及热应力[J]. 固体力学学报, 2011,32(S1): 248-253.(LI Jin’e, WANG Baolin, CHANG Dongmei. Non-Fourier heat conduction and thermal stress of non-Fourier heat conduction an thermal stress of layered materials[J]. Chinese Journal of Solid Mechanics,2011,32(S1): 248-253.(in Chinese))
    [10] 富明慧, 陈焯智. 层合圆柱三维温度场分析的半解析-精细积分法[J]. 应用力学学报, 2012,29(1): 15-20.(FU Minghui, CHEN Chuozhi. The semi-analytical precise integration method for the analysis of three dimensional temperature field of laminated cylinders[J]. Chinese Journal of Applied Mechanics,2012,29(1): 15-20.(in Chinese))
    [11] LIU K C, WANG Y N, CHEN Y S. Investigation on the bio-heat transfer with the dual-phase-lag effect[J]. International Journal of Thermal Sciences,2012,58: 29-35.
    [12] MOVAHEDIAN B, BOROOMAND B. The solution of direct and inverse transient heat conduction problems with layered materials using exponential basis functions[J]. International Journal of Thermal Sciences,2014,77: 186-198.
    [13] BANDOPADHYAY A, CHAKRABORTY S. Combined effects of interfacial permittivity variations and finite ionic sizes on streaming potentials in nanochannels[J]. Langmuir,2012,28(50): 17552-17563.
    [14] XU F, LU T J, SEFFEN K A. Bio-thermomechanics of skin tissues[J]. Journal of the Mechanics & Physics of Solids,2008,56(5): 1852-1884.
    [15] LIN S M, LI C Y. Analytical solutions of non-Fourier bio-heat conductions for skin subjected to pulsed laser heating[J]. International Journal of Thermal Sciences,2016,110: 146-158.
    [16] LIU K C, CHEN H T, CHENG P J. Inverse investigation of non-Fourier heat conduction in tissue[J]. Journal of Thermal Biology,2016,21(2): 68-73.
  • 加载中
计量
  • 文章访问数:  621
  • HTML全文浏览量:  45
  • PDF下载量:  915
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 修回日期:  2017-07-17
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回