留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑热-水-力耦合效应的饱和多孔地基动力响应分析

熊春宝 郭颖 刁钰

熊春宝, 郭颖, 刁钰. 考虑热-水-力耦合效应的饱和多孔地基动力响应分析[J]. 应用数学和力学, 2018, 39(6): 689-699. doi: 10.21656/1000-0887.380140
引用本文: 熊春宝, 郭颖, 刁钰. 考虑热-水-力耦合效应的饱和多孔地基动力响应分析[J]. 应用数学和力学, 2018, 39(6): 689-699. doi: 10.21656/1000-0887.380140
XIONG Chunbao, GUO Ying, DIAO Yu. Dynamic Responses of Saturated Porous Foundations Under Coupled Thermo-Hydro-Mechanical Effects[J]. Applied Mathematics and Mechanics, 2018, 39(6): 689-699. doi: 10.21656/1000-0887.380140
Citation: XIONG Chunbao, GUO Ying, DIAO Yu. Dynamic Responses of Saturated Porous Foundations Under Coupled Thermo-Hydro-Mechanical Effects[J]. Applied Mathematics and Mechanics, 2018, 39(6): 689-699. doi: 10.21656/1000-0887.380140

考虑热-水-力耦合效应的饱和多孔地基动力响应分析

doi: 10.21656/1000-0887.380140
基金项目: 国家重点研发计划(2016YFC0802008)
详细信息
    作者简介:

    熊春宝(1964—),男,教授,博士(E-mail: luhai_tj@126.com);郭颖(1990—),女,博士生(通讯作者. E-mail: gytha_ying@tju.edu.cn).

  • 中图分类号: TU435

Dynamic Responses of Saturated Porous Foundations Under Coupled Thermo-Hydro-Mechanical Effects

Funds: The National Key Research and Development Project of China(2016YFC0802008)
  • 摘要: 基于广义热弹性理论,结合Darcy(达西)定律,对Biot波动方程进行了修正,研究了一个受到椭圆余弦波作用的,均质各向同性半无限大饱和多孔地基的热-水-力多场耦合动态响应问题.建立了饱和多孔弹性地基的热-水-力耦合动力响应模型及控制方程,采用正则模态法求解,得到了问题的解析解,分析了地基中渗透系数变化和椭圆余弦波频率变化对饱和多孔地基中各物理量的影响.最终,给出了无量纲的竖向位移、超孔隙水压力、竖向应力和温度等物理量的分布规律.
  • [1] BIOT M A. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics,1956,27: 240-253.
    [2] LORD H W, SHULMAN Y. A generalized dynamical theory of thermoelasticity[J]. Journal of the Mechanics and Physics of Solids,1967,15(5): 299-309.
    [3] JOSEPH D D, PREZIOSI L. Heat waves[J]. Reviews of Modern Physics, 1989,61(1): 41-73.
    [4] JOSEPH D D, PREZIOSI L. Addendum to the paper “heat waves”[J].Reviews of Modern Physics,1990,62: 375-391.
    [5] GREEN A E, LINDSAY K A. Thermoelasticity[J]. Journal of Elasticity,1972,2(1): 1-7.
    [6] GREEN A E, NAGHDI P M. A re-examination of the basic postulates of thermomechanics[J]. Proceedings of the Royal Society A,1991,432(1885): 171-194.
    [7] GREEN A E, NAGHDI P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses,1992,15(2): 253-264.
    [8] GREEN A E, NAGHDI P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity,1993,31(3): 189-208.
    [9] 王颖泽, 王谦, 刘栋, 等. 弹性半空间热冲击问题的广义热弹性解[J]. 应用数学和力学, 2014,35(6): 640-651.(WANG Yingze, WANG Qian, LIU Dong, et al. Generalized thermoelastic solutions to the problems of thermal shock on elastic half space[J]. Applied Mathematics and Mechanics,2014,35(6): 640-651.(in Chinese))
    [10] 王颖泽, 王谦, 刘栋, 等. 有限厚度圆柱壳热冲击问题的广义热弹性解[J]. 应用数学和力学, 2016,37(6): 644-654.(WANG Yingze, WANG Qian, LIU Dong, et al. Generalized solution to the thermoelastic problem of finite-thickness hollow cylinders subjected to thermal shock[J]. Applied Mathematics and Mechanics,2016,37(6): 644-654.(in Chinese))
    [11] XIONG Chunbao, GUO Ying, DIAO Yu. Normal mode analysis to a poroelastic half-space problem under generalized thermoelasticity[J]. Latin American Journal of Solids and Structures,2017,14: 930-949.
    [12] HETNARSKI R B, IGNACZAK J. Generalized thermoelasticity[J]. Journal of Thermal Stresses,1999,22(4/5): 451-476.
    [13] BOOKER J R, SAVVIDOU C. Consolidation around a spherical heat source[J]. International Journal of Solids and Structures,1984,20(11/12): 1079-1090.
    [14] BIOT M A. Variational Lagrangian-thermodynamics of non-isothermal finite strain mechanics of porous solids and thermomolecular diffusion[J]. International Journal of Solids and Structures,1977,13(6): 579-597.
    [15] 白冰. 变温度荷载作用下半无限成层饱和介质的热固结分析[J]. 应用数学和力学, 2006,27(11): 1341-1348.(BAI Bing. Thermal consolidation of layered porous half-space to variable thermal loading[J]. Applied Mathematics and Mechanics,2006,27(11): 1341-1348.(in Chinese))
    [16] BAI Bing. Fluctuation responses of saturated porous media subjected to cyclic thermal loading[J]. Computers and Geotechnics,2006,33(8): 396-403.
    [17] BAI Bing, LI Tao. Solutions for cylindrical cavity in saturated thermoporoelastic medium[J]. Acta Mechanica Solida Sinica,2009,22(1): 85-94.
    [18] LU Zheng, YAO Hailin, LIU Ganbin. Thermomechanical response of a poroelastic half-space soil medium subjected to time harmonic loads[J]. Computers and Geotechnics,2010,37(3): 343-350.
    [19] LIU Ganbin, XIE Kanghe, ZHENG Rongyue. Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium[J]. Science in China, Series E: Technological Sciences,2009,52(8): 2373-2383.
    [20] LIU Ganbin, XIE Kanghe, ZHENG Rongyue. Thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium[J]. Applied Mathematical Modelling,2010,34(8): 2203-2222.
    [21] KUMAR R, KAUR M, RAJVANSHI S C. Propagation of waves in micropolar generalized thermoelastic materials with two temperatures bordered with layers or half-spaces of inviscid liquid[J]. Latin American Journal of Solids and Structures,2014,11(7): 1091-1113.
    [22] KUMAR R, DEVI S. Thermomechanical intereactions in porous generalized thermoelastic material permeated with heat sources[J]. Multidiscipline Modeling in Materials and Structures,2008,4(3): 237-254.
    [23] 高娟, 冯梅梅, 高乾. 地铁联络通道冻结施工的热-流-固(THM)耦合分析[J]. 冰川冻土, 2013,35(4): 904-912.(GAO Juan, FENG Meimei, GAO Qian. THM coupling analysis of connected aisle in metro construction by artificial freezing method[J]. Journal of Glaciology and Geocryology, 2013,35(4): 904-912.(in Chinese))
    [24] ARMAND G, BUMBIELER F, CONIL N, et al. Main outcomes from in situ thermo-hydro-mechanical experiments programme to demonstrate feasibility of radioactive high-level waste disposal in the Callovo-Oxfordian claystone[J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9: 415-427.
    [25] 郑荣跃, 刘干斌, 唐国金. 考虑扩散效应圆形隧洞热弹性耦合动力响应研究[J]. 国防科技大学学报, 2008,30(3): 27-31.(ZHENG Rongyue, LIU Ganbin, TANG Guojin. Thermodynamic response of a cylindrical tunnel in the theory of generalized thermoelastic diffusion[J]. Journal of National University of Defense Technology,2008,30(3): 27-31.(in Chinese))
    [26] ZHOU Xianglian, ZHANG Jun, GUO Junjie, et al. Cnoidal wave induced seabed response around a buried pipeline[J]. Ocean Engineering,2015,101: 118-130.
    [27] 王立忠, 潘冬子, 凌道盛. 海床波浪响应的积分变换解及其分析应用[J]. 岩石工程学报, 2006,28(7): 847-852.(WANG Lizhong, PAN Dongzi, LING Daosheng. Analysis on integral transform of the wave-induced response in seabed and its application[J]. Chinese Journal of Geotechnical Engineering,2006,28(7): 847-852.(in Chinese))
    [28] NGUYEN-TUAN L, KNKE C, BETTZIECHE V, et al. Numerical modeling and validation for 3D coupled-nonlinear thermo-hydro-mechanical problems in masonry dams[J]. Computers & Structures,2017,178: 143-154.
    [29] BIOT M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics,1941,12: 155-164.
  • 加载中
计量
  • 文章访问数:  1204
  • HTML全文浏览量:  189
  • PDF下载量:  606
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-15
  • 修回日期:  2017-08-08
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回