留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六维系统环形桁架天线的非线性动力学分析

孙莹 张伟 吴瑞琴

孙莹, 张伟, 吴瑞琴. 六维系统环形桁架天线的非线性动力学分析[J]. 应用数学和力学, 2019, 40(3): 282-301. doi: 10.21656/1000-0887.390058
引用本文: 孙莹, 张伟, 吴瑞琴. 六维系统环形桁架天线的非线性动力学分析[J]. 应用数学和力学, 2019, 40(3): 282-301. doi: 10.21656/1000-0887.390058
SUN Ying, ZHANG Wei, WU Ruiqin. Analysis on Nonlinear Dynamics of Circular Truss Antennae in 6D Systems[J]. Applied Mathematics and Mechanics, 2019, 40(3): 282-301. doi: 10.21656/1000-0887.390058
Citation: SUN Ying, ZHANG Wei, WU Ruiqin. Analysis on Nonlinear Dynamics of Circular Truss Antennae in 6D Systems[J]. Applied Mathematics and Mechanics, 2019, 40(3): 282-301. doi: 10.21656/1000-0887.390058

六维系统环形桁架天线的非线性动力学分析

doi: 10.21656/1000-0887.390058
基金项目: 国家自然科学基金(11290152;11427801)
详细信息
    作者简介:

    孙莹(1987—),女,博士生(E-mail: sunying0000@126.com);张伟(1960—),男,教授,博士生导师(通讯作者. E-mail: sandyzhang0@yahoo.com);吴瑞琴(1990—),女,博士生(E-mail: ruiqinwu@163.com).

  • 中图分类号: O322

Analysis on Nonlinear Dynamics of Circular Truss Antennae in 6D Systems

Funds: The National Natural Science Foundation of China(11290152;11427801)
  • 摘要: 随着科技的发展,大尺度、低重量、易收拢、高精度等特点是未来天线的主要发展方向.环形桁架天线在发射时整体处于收拢状态,升空后按指令有顺序展开,节省了航天器的空间.此外,环形桁架天线可根据需求设计展开口径的大小.所以,环形桁架天线是目前较为理想的天线结构形式.由于自身结构特点以及复杂的空间环境因素,天线在运行时易产生大幅度的非线性振动,严重影响卫星的稳定运行.因此,将环形桁架天线简化成等效圆柱壳模型,并建立其动力学方程.采用理论分析和数值模拟研究了六维系统环形桁架天线的非线性动力学特性.利用规范型理论化简系统方程分析未扰系统和扰动系统的非线性动力学行为,利用能量相位法验证环形桁架天线系统具有Shilnikov型多脉冲混沌运动,利用数值模拟验证理论分析.并通过数值模拟研究了热激励对环形桁架天线系统非线性振动的影响.
  • [1] AKIRA M, AKIO T, NAOKAZU H. Technology status of the 13 m aperture deployment antenna reflectors for engineering test satellite VIII[J]. Acta Astronautica,2000,47(2/9): 147-152.
    [2] TIBERT G. Deployable tensegrity structures for space applications[D]. PhD Thesis. Stockholm: Royal Institute of Technology, 2002.
    [3] 闵桂荣, 郭舜. 航天器热控制[M]. 北京: 科学出版社, 1998.(MIN Guirong, GUO Shun. Spacecraft Thermal Control [M]. Beijing: Science Press, 1998.(in Chinese))
    [4] THOMSON M W. AstroMeshTM deployable reflectors for Ku- and Ka-band commercial satellites[C]//20th AIAA International Communication Satellite Systems Conference and Exhibit. Montreal, Quebec, Canada, 2002.
    [5] GHOSH A K, KUMAR M R. Dynamic analysis of supporting structure of mobile antenna[J]. Computers & Structures,1997,63(3): 633-637.
    [6] MAKAROV A L, KHOROSHILOV V S, ZAKRZHEVSKII A E. Spacecraft dynamics due to elastic ring antenna deployment[J]. Acta Astronautica,2011,69(7/8): 691-702.
    [7] 赵孟良, 关富玲. 考虑摩擦的周边桁架式可展天线展开动力学分析[J]. 空间科学报, 2006,26(3): 220-226.(ZHAO Mengliang, GUAN Fuling. Deployment dynamic analysis of circular truss deployable antenna with friction[J]. Chinese Journal of Space Science,2006,26(3): 220-226.(in Chinese))
    [8] YAN X, GUAN F L, CHEN J J, et al. Structural design and static analysis of a double-ring deployable truss for mesh antennas[J]. Acta Astronautica,2012,81(2): 545-554.
    [9] YAN X, GUAN F L, XU X, et al. Development of a novel double-ring deployable mesh antenna[J]. International Journal of Antennas and Propagation,2012. DOI: 10.1155/2012/375463.
    [10] 胡海岩, 田强, 张伟, 等. 大型网架式可展开空间结构的非线性动力学与控制[J]. 力学进展, 2013,43(4): 390-414.(HU Haiyan, TIAN Qiang, ZHANG Wei, et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes[J]. Advances in Mechanics,2013,43(4): 390-414.(in Chinese))
    [11] GAO X M, JIN D P, HU H Y. Internal resonances and their bifurcations of a rigid-flexible space antenna[J].International Journal of Non-Linear Mechanics,2017,94: 160-173.
    [12] ZHANG Y Q, LI N, YANG G G, et al. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure[J].Acta Astronautica,2017,131: 182-189.
    [13] GAO X M, JIN D P, HU H Y. Internal resonances and their bifurcations of a rigid-flexible space antenna[J]. International Journal of Non-Linear Mechanics,2017,94: 160-173.
    [14] PELLICANO F. Dynamic stability and sensitivity to geometric imperfections of strongly compressed circular cylindrical shells under dynamic axial loads[J]. Communications in Nonlinear Science & Numerical Simulation,2009,14(8): 3449-3462.
    [15] ZHANG W, CHEN J, SUN Y. Nonlinear breathing vibrations and chaos of a circular truss antenna with 1∶2 internal resonance[J]. International Journal of Bifurcation and Chaos,2017,26(5): 1650077. DOI: 10.1142/S0218127416500772.
    [16] HALLER G, WIGGINS S. Orbits homoclinic to resonances: the Hamiltonian case[J]. Physica D: Nonlinear Phenomena,1993,66(3/4): 298-346.
    [17] HALLER G, WIGGINS S. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation[J].Physica D: Nonlinear Phenomena,1995,85(3): 311-347.
    [18] KAPER T J, KOVACIC G. Multi-bump orbits homoclinic to resonance bands[J]. Transactions of the American Mathematical Society,1996,348(10): 3835-3887.
    [19] CAMASSA R, KOVACIC G, TIN S K. A Melnikov method for homoclinic orbits with many pulses[J]. Archive for Rational Mechanics and Analysis,1998,143(2): 105-193.
    [20] YAO M H, ZHANG W. Multi-pulse Shilnikov orbits and chaotic dynamics in nonlinear nonplanar motion of a cantilever beam[J]. International Journal of Bifurcation and Chaos,2005,15: 3923-3952.
    [21] YAO M H, ZHANG W. Multi-pulse homoclinic orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt[J]. Chaos, Solitons & Fractals,2006,28(1): 42-66.
    [22] ZHANG W, GAO M J, YAO M H, et al. Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate[J]. Science in China Series G: Physics, Mechanics & Astronomy,2009,52(12): 1989-2000.
    [23] 赵岩, 李明武, 林家浩, 等. 陀螺系统随机振动分析的辛本征展开方法[J]. 应用数学和力学, 2015,36(5): 449-459.(ZHAO Yan, LI Mingwu, LIN Jiahao, et al. Symplectic eigenspace expansion for the random vibration analysis of gyroscopic systems[J]. Applied Mathematics and Mechanics,2015,36(5): 449-459.(in Chinese))
    [24] 黎崛珉, 陆泽琦, 陈立群. 非线性阻尼非线性刚度隔振系统随机动力学特性研究[J]. 应用数学和力学, 2017,38(6): 613-621.(LI Juemin, LU Zeqi, CHEN Liqun. An investigation on nonlinear-damping and nonlinear-stiffness vibration isolation systems under random excitations[J]. Applied Mathematics and Mechanics,2017,38(6): 613-621.(in Chinese))
    [25] 吴子英, 牛峰琦, 刘蕊, 等. 有色噪声激励下双稳态电磁式振动能量捕获器动力学特性研究[J]. 应用数学和力学, 2017,38(5): 570-580.(WU Ziying, NIU Fengqi, LIU Rui, et al. Dynamic characteristics of bistable electromagnetic vibration energy harvesters under colored noise excitation[J]. Applied Mathematics and Mechanics,2017,38(5): 570-580.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1225
  • HTML全文浏览量:  180
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-06
  • 修回日期:  2018-06-15
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回