留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀温度影响下格栅夹芯结构微极梁等效方法

张锐 冯亚 杨硕

张锐, 冯亚, 杨硕. 非均匀温度影响下格栅夹芯结构微极梁等效方法[J]. 应用数学和力学, 2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086
引用本文: 张锐, 冯亚, 杨硕. 非均匀温度影响下格栅夹芯结构微极梁等效方法[J]. 应用数学和力学, 2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086
ZHANG Rui, FENG Ya, YANG Shuo. An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions[J]. Applied Mathematics and Mechanics, 2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086
Citation: ZHANG Rui, FENG Ya, YANG Shuo. An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions[J]. Applied Mathematics and Mechanics, 2018, 39(6): 672-680. doi: 10.21656/1000-0887.390086

非均匀温度影响下格栅夹芯结构微极梁等效方法

doi: 10.21656/1000-0887.390086
详细信息
    作者简介:

    张锐(1985—),男,讲师,博士(通讯作者. E-mail: zhangrui19850424@tust.edu.cn);冯亚(1994—),女,硕士生(E-mail: fy19940704@tust.edu.cn);杨硕(1987—),男,讲师,博士(E-mail: yangshuo@tust.edu.cn).

  • 中图分类号: O342

An Equivalent Micropolar Beam Method for Grid Sandwich Structures Under Inhomogeneous Temperature Conditions

  • 摘要: 通过胞元能量等效的方法,将格栅夹芯结构等效为连续的微极弹性材料,得到了等效微极弹性材料的本构关系.利用几何关系与平衡条件建立了微极梁受热变形的控制方程组,给出了微极梁位移随温度载荷变化的表达式.通过对比等效微极梁模型、夹层梁模型和ANSYS有限元软件计算的非均匀温度影响下悬臂格栅夹层梁受热弯曲变形的数值结果,验证了微极弹性等效的有效性.结果表明,将不连续的格栅夹芯结构等效为连续介质构成的模型时,由于约束的增加、自由度的减少,需要更多的应力、应变参量来描述其非局部的特性.
  • [1] 范绪箕. 高速飞行器热结构分析与应用[M]. 北京: 国防工业出版社, 2009.(FAN Zhuqi. Thermal Structures Analysis and Applications of Highspeed Vehicles [M]. Beijing: National Defend Industry Press, 2009.(in Chinese))
    [2] KO W L. Heat shielding characteristics and thermostructural performance of a superalloy honeycomb sandwich thermal protection system (TPS): NASA/TP-2004-212024[R]. 2004.
    [3] 马玉娥. 可重复使用运载器热防护系统热/力耦合数值计算研究[D]. 博士学位论文. 西安: 西北工业大学, 2005.(MA Yu’e. Study of thermo-mechanical coupled computation for thermal protection system of reusable launch vehicle[D]. PhD Thesis. Xi’an: Northwestern Polytechnical University, 2005.(in Chinese))
    [4] 唐羽烨, 薛明德. 蜂窝夹芯板的热学与力学特性分析[J]. 复合材料学报, 2005,22(2): 130-136.(TANG Yuye, XUE Mingde. Thermo-mechanical characteristics analysis of sandwich panel with honeycomb core[J]. Acta Materice Compositae Sinica,2005,22(2): 130-136.(in Chinese))
    [5] 刘振祺, 梁伟, 杨嘉陵, 等. MTPS蜂窝夹芯结构传热性能及热应力分析[J]. 航空学报, 2009,30(1): 86-91.(LIU Zhenqi, LIANG Wei, YANG Jialing, et al. Analysis of thermal and mechanical properties of honeycomb structure of MTPS[J]. Acta Aeronautic et Astronautica Sinica,2009,30(1): 86-91.(in Chinese))
    [6] 李红. 高超声速飞行器金属蜂窝夹芯结构的热机耦合行为分析[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2011.(LI Hong. Research on thermo-mechanical-coupled properties of metallic honeycomb structure of high-speed vehicle[D]. Master Thesis. Harbin: Harbin Engineering University, 2011.(in Chinese))
    [7] 张锐, 尚新春. 格栅夹层梁的热弯曲变形[J]. 复合材料学报, 2014,31(6): 1558-1565.(ZHANG Rui, SHANG Xinchun. Thermal bending deformation of grid sandwich beam[J]. Acta Materiae Compositae Sinica,2014,31(6): 1558-1565.(in Chinese))
    [8] 张锐, 尚新春. 考虑腹板弯曲的一维格栅夹层结构热变形[J]. 北京理工大学学报, 2015,35(4): 331-335.(ZHANG Rui, SHANG Xinchun. Thermal deformation of the sandwich structure with 1-D grid considering the bending of the webs[J]. Transactions of Beijing Institute of Technology,2015,35(4): 331-335.(in Chinese))
    [9] NOORA K, MALIK M. An assessment of five modeling approaches for thermo-mechanical stress analysis of laminated composite panels[J]. Computational Mechanics,2000,25(1): 43-58.
    [10] 中国科学院, 北京力学研究所, 固体力学研究室板壳组. 夹层板壳的弯曲、稳定和振动[M]. 北京: 科学出版社, 1977.(Plate and Shell Group, Laboratory of Solid Mechanics, Institute of Mechanics, Chinese Academy of Sciences. Bending, Stability and Vibration of Sandwich Plates and Shells [M]. Beijing: Science Press, 1977.(in Chinese))
    [11] SAVOIA M, REDDY J N. Three-dimensional thermal analysis of laminated composite plates[J]. International Journal of Solids and Structures,1995,32(5): 593-608.
    [12] NOOR A K, NEMETH M P. Micropolar beam models for lattice grids with rigid joints[J]. Computer Methods in Applied Mechanics and Engineering,1980,21(2): 249-263.
    [13] IESAN D. Thermal effects in chiral elastic rods[J]. International Journal of Thermal Sciences,2010,49(9): 1593-1599.
    [14] 张锐, 尚新春. 格栅夹层梁热弯曲的等效微极热弹性分析[J]. 应用数学和力学, 2015,36(9): 936-944.(ZHANG Rui, SHANG Xinchun. Equivalent micropolar thermoelastic analysis of thermal bending for grid sandwich beams[J]. Applied Mathematics and Mechanics,2015,36(9): 936-944.(in Chinese))
    [15] 易斯男, 程耿东, 徐亮. 一维周期性梁结构等效性能计算方法讨论[J]. 计算力学学报, 2016,33(5): 704-710.(YI Sinan, CHENG Gengdong, XU Liang. Discussion of effective properties prediction methods for 1D periodic beam structure[J]. Chinese Journal of Computational Mechanics,2016,33(5): 704-710.(in Chinese))
    [16] GESUALDO A, IANNUZZO A, PENTA F, et al. Homogenization of a Vierendeel girder with elastic joints into an equivalent polar beam[J]. Journal of Mechanics of Materials & Structures,2017,12(4): 485-504.
    [17] PENTA F, ESPOSITO L, PUCILLO G P, et al. On the homogenization of periodic beam-like structures[J]. Procedia Structural Integrity,2018,8: 399-409.
  • 加载中
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  168
  • PDF下载量:  398
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 修回日期:  2018-05-14
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回