留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用

柳文清 陈清婉

柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100
引用本文: 柳文清, 陈清婉. 捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用[J]. 应用数学和力学, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100
LIU Wenqing, CHEN Qingwan. Influence of Diffusion on an InvasionDiffusion Prey-Predator Model With Disease Infection in Both Populations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100
Citation: LIU Wenqing, CHEN Qingwan. Influence of Diffusion on an InvasionDiffusion Prey-Predator Model With Disease Infection in Both Populations[J]. Applied Mathematics and Mechanics, 2019, 40(3): 321-331. doi: 10.21656/1000-0887.390100

捕食者食饵均染病的入侵反应扩散捕食系统中扩散的作用

doi: 10.21656/1000-0887.390100
基金项目: 国家自然科学基金(11662005);江西省青年科学基金(2016BAB211001)
详细信息
    作者简介:

    柳文清(1984—),男,硕士(通讯作者. E-mail: lwq84815@163.com).

  • 中图分类号: O175.26

Influence of Diffusion on an InvasionDiffusion Prey-Predator Model With Disease Infection in Both Populations

Funds: The National Natural Science Foundation of China(11662005)
  • 摘要: 研究了捕食者食饵均染病的入侵反应扩散捕食系统.利用特征值方法和构造Lyapunov函数,获得了入侵扩散对正常数平衡解的影响, 当入侵扩散系数充分大时, 导致平衡态失稳.进一步, 利用拓扑度方法, 证明了在一定条件下入侵扩散系数很大, 自扩散充分小时, 有非常数正平衡解存在.
  • [1] ANDERSON R M, MAY R M. Infectious Disease of Humans Dynamics and Control [M]. Oxford: Oxford University Press, UK, 1991.
    [2] VENTURINO E. Epidemics in predator-prey models: disease in the prey[J]. Mathematical Population Dynamics: Analysis of Heterogeneity,1995,1: 381-393.
    [3] XIAO Y, CHEN L. Modeling and analysis of a predator-prey model with disease in the prey[J]. Mathematical Bioscience,2001,171(1): 59-82.
    [4] CHATTOPADHYAY J, ARINO O. A predator-prey model with disease in the prey[J]. Nonlinear Analysis: Theory, Methods and Applications,1999,36(6): 747-766.
    [5] 孙树林, 原存德. 捕食者具有流行疾病的捕食-被捕食模型的分析[J]. 生物数学学报, 2006,21(1): 97-104.(SUN Shuling, YUAN Cunde. On the analysis of predator-prey model with epidemic in the predator[J]. Journal of Biomathematics,2006,21(1): 97-104.(in Chinese))
    [6] VENTURINO E. Epidemics in predator-prey models: disease in the predators[J]. Mathematical Medicine and Biology: a Journal of the IMA,2002,19(3): 185-205.
    [7] DAS K P. A study of chaotic dynamics and its possible control in a predator prey model with disease in the predator[J]. Journal of Dynamical and Control Systems,2015,21(4): 605-624.
    [8] HEISH Y H, HSIAO C K. Predator-prey model with disease infection in both populations[J]. Mathematical Medicine and Biology: a Journal of the IMA,2008,25(3): 247-266.
    [9] DAS K P, KUNDU K, CHATTOPADHYAY J. A predator-prey mathematical model with both the populations affected by diseases[J]. Ecological Complexity,2011,8: 68-80.
    [10] DAS K P, CHATTOPADHYAY J. A mathematical study of a predator-prey model with disease circulating in the both populations[J]. International Journal of Biomathematics,2015,8(2): 1-27.
    [11] 张丽娜, 鲁引儿. 具有Holling-Ⅲ型功能反应的捕食者-食饵扩散模型中避难所的影响[J]. 应用数学, 2017,30(2): 359-364.(ZHANG Lina, LU Yiner. Effect of a prey refuge on a predator-prey model with diffusion and Holling type Ⅲ response function[J]. Mathematica Applicata,2017,30(2): 359-364.(in Chinese))
    [12] OKUBO A. Diffusion and Ecological Problems: Mathematical Models [M]. New York: Springer Verlag, 1980.
    [13] 李成林. 捕食者带有疾病的入侵反应扩散捕食系统的空间斑图[J]. 应用数学学报, 2016,39(6): 832-846.(LI Chenling. Spatiotemporal pattern formation of an invasion-diffusion predator-prey system with disease in the predator[J]. Acta Mathematicae Applicatae Sinica,2016,39(6): 832-846.(in Chinese))
    [14] 祖力, 黄冬冬, 柳扬. 捕食者和食饵均带有扩散的随机捕食-食饵模型动力学分析[J]. 应用数学和力学, 2017,38(3): 355-368.(ZU Li, HUANG Dongdong, LIU Yang. Dynamics of dual-dispersal predator-prey systems under stochastic perturbations[J]. Applied Mathematics and Mechanics,2017,38(3): 355-368.(in Chinese))
    [15] YANG K. Delay Differential Equation Application in Population Dynamics [M]. Boston: Academic Press, 1993.
    [16] LIN C S, NIW M, TAKAGI I. Large amplitude stationary solutions to a chemotaxis system[J]. Journal of Differential Equations,1988,72(1): 1-27.
  • 加载中
计量
  • 文章访问数:  1087
  • HTML全文浏览量:  163
  • PDF下载量:  483
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-27
  • 修回日期:  2018-10-16
  • 刊出日期:  2019-03-01

目录

    /

    返回文章
    返回