留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耳蜗毛细胞活动的神经动力学分析

戎伟峰 王如彬

戎伟峰, 王如彬. 耳蜗毛细胞活动的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 139-149. doi: 10.21656/1000-0887.390184
引用本文: 戎伟峰, 王如彬. 耳蜗毛细胞活动的神经动力学分析[J]. 应用数学和力学, 2019, 40(2): 139-149. doi: 10.21656/1000-0887.390184
RONG Weifeng, WANG Rubin. Neurodynamic Analysis of Cochlear Hair Cell Activity[J]. Applied Mathematics and Mechanics, 2019, 40(2): 139-149. doi: 10.21656/1000-0887.390184
Citation: RONG Weifeng, WANG Rubin. Neurodynamic Analysis of Cochlear Hair Cell Activity[J]. Applied Mathematics and Mechanics, 2019, 40(2): 139-149. doi: 10.21656/1000-0887.390184

耳蜗毛细胞活动的神经动力学分析

doi: 10.21656/1000-0887.390184
基金项目: 国家自然科学基金(11232005;11472104)
详细信息
    作者简介:

    戎伟峰(1993—),男,硕士生(E-mail: rwf106@163.com);王如彬(1951—),男,教授,博士生导师(通讯作者. E-mail: rbwang@163.com).

  • 中图分类号: O29;O39

Neurodynamic Analysis of Cochlear Hair Cell Activity

Funds: The National Natural Science Foundation of China(11232005;11472104)
  • 摘要: 为了更深刻地了解耳蜗毛细胞活动的神经动力学机制,建立了基于Hodgkin-Huxley方程的毛细胞模型,通过数值模拟对不同声音频率刺激时的毛细胞膜电位、功率和能量消耗进行了神经动力学分析.研究结果表明:声音频率在0.1~20 kHz范围内,外毛细胞膜电位的衰减低于内毛细胞,而外毛细胞功率和能量消耗的增益远高于内毛细胞.外毛细胞膜电位的低衰减、功率和能量消耗的高增益支持了外毛细胞的放大作用是由电致运动驱动的.对耳蜗毛细胞膜电位、功率和能量消耗的研究结果有助于深刻了解毛细胞活动的神经动力学性质.
  • [1] BEAR M F, CONNORS B W, PARADISO M A. Neuroscience: Exploring the Brain [M]. Philadelphia: Williams & Wilkins, 2006.
    [2] 梁之安. 听觉感受和辨别的神经机制[M]. 上海: 上海科技教育出版社, 1999.(LIANG Zhian. Neural Mechanisms of Auditory Perception and Discrimination [M]. Shanghai: Shanghai Science and Technology Education Press, 1999.(in Chinese))
    [3] KANDEL E, SCHWARTZ J, JESSELL T, et al. Principles of Neural Science [M]. 5th ed. McGraw-Hill Education Press, 2013.
    [4] ZHAO J, DENG B, QIN Y, et al. Weak electric fields detectability in a noisy neural network[J]. Cognitive Neurodynamics,2017,11(1): 81-90.
    [5] LI X, ZHANG Y, LI L, et al. Attention is shaped by semantic level of event-structure during speech comprehension: an electroencephalogram study[J]. Cognitive Neurodynamics,2017,11(5): 467-481.
    [6] JR NADOL J B. Hearing loss[J]. The New England Journal of Medicine,1993,329(15): 1092-1102.
    [7] HUANG M, JIN J, ZHANG Y, et al. Usage of drip drops as stimuli in an auditory P300 BCI paradigm[J]. Cognitive Neurodynamics,2018,12(1): 85-94.
    [8] FETTIPLACE R, FUCHS P A. Mechanisms of hair cell tuning[J]. Annual Review of Physiology,1999,61: 809-834.
    [9] LAVIGNE F, LONGRE D, MAYAFFRE D, et al. Semantic integration by pattern priming: experiment and cortical network model[J]. Cognitive Neurodynamics,2016,10(6): 513-533.
    [10] FETTIPLACE R, HACKNEY C M. The sensory and motor roles of auditory hair cells[J]. Nature Reviews Neuroscience,2006,7(1): 19-29.
    [11] YUVARAJ R, MURUGAPPAN M. Hemispheric asymmetry non-linear analysis of EEG during emotional responses from idiopathic Parkinson’s disease patients[J]. Cognitive Neurodynamics,2016,10(3): 225-234.
    [12] BEURG M, FETTIPLACE R, NAM J H, et al. Localization of inner hair cell mechanotransducer channels using high speed calcium imaging[J]. Nature Neuroscience,2009,12(5): 553-558.
    [13] HWANG J H, NAM K W, JANG D P, et al. Effects of spectral smearing of stimuli on the performance of auditory steady-state response-based brain-computer interface[J]. Cognitive Neurodynamics,2017,11(6): 515-527.
    [14] COREY D P, HUDSPETH A J. Ionic basis of the receptor potential in a vertebrate hair cell[J]. Nature,1979,281(5733): 675-677.
    [15] HUDSPETH A J. How the ear’s works work[J]. Nature,1989,341(6241): 397-404.
    [16] YI G S, WANG J, DENG B, et al. Complexity of resting-state EEG activity in the patients with early-stage Parkinson’s disease[J]. Cognitive Neurodynamics,2017,11(2): 147-160.
    [17] RUBEL E W, FURRER S A, STONE J S. A brief history of hair cell regeneration research and speculations on the future[J]. Hearing Research,2013,297(1): 42-51.
    [18] HAKAK A M, BHATTACHARYA J, BILORIA N, et al. Navigating abstract virtual environment: an eeg study[J]. Cognitive Neurodynamics,2016,10(6): 471-480.
    [19] BROWNELL W E, BADER C R, BERTRAND D, et al. Evoked mechanical responses of isolated cochlear outer hair cells[J]. Science,1985,227(4683): 194-196.
    [20] BROWNELL W E. What is electromotility? The history of its discovery and its relevance to acoustics[J]. Acoustics Today,2017,13(1): 20-27.
    [21] ASHMORE J. Cochlear outer hair cell motility[J]. Physiological Reviews,2008,88(1): 173-210.
    [22] HOWARD J, HUDSPETH A A J. Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the Bullfrog’s saccular hair cell[J]. Neuron,1988,1(3): 189-199.
    [23] MOUNTAIN D C, CODY A R. Multiple modes of inner hair cell stimulation[J]. Hearing Research,1999,132(1/2): 1-14.
    [24] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. Bulletin of Mathematical Biology,1952,52(1/2): 25-72.
    [25] CATACUZZENO L, FIORETTI B, FRANCIOLINI F. Voltage-gated outward K currents in frog saccular hair cells[J].Journal of Neurophysiology,2003,90(6): 3688-3701.
    [26] CATACUZZENO L, FIORETTI B, PERIN P, et al. Spontaneous low-frequency voltage oscillations in frog saccular hair cells[J]. Journal of Physiology,2004,561(3): 685-701.
    [27] HAN L, NEIMAN A B. Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics[J]. Physical Review E,2010,81(4): 041913. DOI: 10.1103/PhysRevE.81.041913.
    [28] NEIMAN A B, KAI D, BENJAMIN L, et al. Spontaneous voltage oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair cells[J]. Journal of Mathematical Neuroscience,2011,1(11): 1-24.
    [29] MISTRK P, MULLALEY C, MAMMANO F, et al. Three-dimensional current flow in a large-scale model of the cochlea and the mechanism of amplification of sound[J]. Journal of the Royal Society Interface,2009,6(32): 279-291.
    [30] MAMMANO F, ASHMORE J F. Differential expression of outer hair cell potassium currents in the isolated cochlea of the guinea-pig[J]. The Journal of Physiology,1996,496(3): 639-646.
    [31] KROS C J, RUSCH A, RICHARDSON G P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea[J]. Proceedings of the Royal Society of London B: Biological Sciences,1992,249(1325): 185-193.
    [32] MOUJAHID A, D’ANJOU A, TORREALDEA F J, et al. Energy and information in Hodgkin-Huxley neurons[J]. Physical Review E,2011,83(3): 031912. DOI:10.1103/PhysRevE.83.031912.
    [33] WANG Y, WANG R, XU X. Neural energy supply-consumption properties based on Hodgkin-Huxley model[J]. Neural Plasticity,2017,2017: 6207141. DOI: 10.1155/2017/6207141.
    [34] PALMER A R, RUSSELL I J. Phase-locking in the cochlear nerve of the guinea-pig and its relation to the receptor potential of inner hair-cells[J]. Hearing Research,1986,24(1): 1-15.
  • 加载中
计量
  • 文章访问数:  1056
  • HTML全文浏览量:  170
  • PDF下载量:  1074
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-07-25
  • 刊出日期:  2019-02-01

目录

    /

    返回文章
    返回