留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析

戴德宣 王少伟

戴德宣, 王少伟. 趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析[J]. 应用数学和力学, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298
引用本文: 戴德宣, 王少伟. 趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析[J]. 应用数学和力学, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298
DAI Dexuan, WANG Shaowei. Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid[J]. Applied Mathematics and Mechanics, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298
Citation: DAI Dexuan, WANG Shaowei. Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid[J]. Applied Mathematics and Mechanics, 2019, 40(8): 856-865. doi: 10.21656/1000-0887.390298

趋旋性微生物在幂律流体饱和水平多孔层中的热-生物对流稳定性分析

doi: 10.21656/1000-0887.390298
基金项目: 国家自然科学基金(11672164)
详细信息
    作者简介:

    戴德宣(1994—),男,硕士生(E-mail: 775113242@qq.com);王少伟(1980—),男,教授,博士,博士生导师(通讯作者. E-mail: shaoweiwang@sdu.edu.cn).

  • 中图分类号: O357.3; O373

Linear Stability Analysis on Thermo-Bioconvection of Gyrotactic Microorganisms in a Horizontal Porous Layer Saturated by a Power-Law Fluid

Funds: The National Natural Science Foundation of China(11672164)
  • 摘要: 基于趋旋性微生物和幂律流体模型,研究了在含有非Newton流体饱和多孔介质中生物对流的线性稳定性问题.利用Galerkin数值方法求解了该系统的控制方程,得到生物Rayleigh数的数值解,讨论了非Newton流体的幂律指数对生物对流稳定性在假塑性流体和膨胀性流体间的变化规律.研究结果表明,随着幂律流体的速度增大,幂律指数对生物对流稳定性的影响会发生变化,并且这种变化会受到热Rayleigh数和生物Lewis数的影响.另外,微生物趋旋性特征越明显,生物对流系统就越不稳定,而适当增大非Newton流体的幂律指数则有利于系统的稳定性.
  • [1] WAGER H. On the effect of gravity upon the movements and aggregation of euglena viridis, ehrb, and other microorganisms[J]. Philosophical Transactions of the Royal Society B: Biological Sciences,1911,201(1): 333-390.
    [2] KESSLER J O. Hydrodynamic focusing of motile algal cells[J]. Nature,1985,313(5999): 218-220.
    [3] KUZNETSOV A V, AVRAMENKO A A. Stability analysis of bioconvection of gyrotactic motile microorganisms in a fluid saturated porous medium[J]. Transport in Porous Media,2003,53(1): 95-104.
    [4] NIELD D A, KUZNETSOV A V. The onset of bio-thermal convection in a suspension of gyrotactic microorganisms in a fluid layer: oscillatory convection[J]. International Journal of Thermal Sciences,2006,45(10): 990-997.
    [5] ZHAO M, XIAO Y, WANG S. Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms[J]. International Journal of Heat and Mass Transfer,2018,126: 95-102.
    [6] BARLETTA A, NIELD D A. Linear instability of the horizontal throughflow in a plane porous layer saturated by a power-law fluid[J]. Physics of Fluids,2011,23(1): 013102.
    [7] BARLETTA A, STORESLETTEN L. Linear instability of the vertical throughflow in a horizontal porous layer saturated by a power-law fluid[J]. International Journal of Heat and Mass Transfer,2016,99: 293-302.
    [8] 罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016,37(4): 373-381.(LUO Yan, LI Ming, YANG Dayong. Simmulation of mixed electroosmotic and pressure-driven flows of power-law fluids in microchannels[J]. Applied Mathematics and Mechanics,2016,37(4): 373-381.(in Chinese))
    [9] 田兴旺, 王平, 徐士鸣. 颗粒堆积多孔介质内幂律流体的流动阻力特性[J]. 哈尔滨工业大学学报, 2017,49(1): 126-132.(TIAN Xingwang, WANG Ping, XU Shiming. Flow resistance characteristics of power law fluid flow through granular porous medium[J]. Journal of Harbin Institute of Technology,2017,49(1): 126-132.(in Chinese))
    [10] 杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018,39(11): 1213-1226.(YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics,2018,39(11): 1213-1226.(in Chinese))
    [11] CHRISTOPHER R H, MIDDLEMAN S. Power-law flow through a packed tube[J]. Industrial & Engineering Chemistry Fundamentals,1965,4(4): 422-426.
    [12] GRAY D D, GIORGINI A. The validity of the Boussinesq approximation for liquids and gases[J]. International Journal of Heat and Mass Transfer,1976,19(5): 545-551.
    [13] PEDLEY T J, KESSLER J O. The orientation of spheroidal microorganisms swimming in a flow field[J]. Proceedings of the Royal Society of London,1987,231(1262): 47-70.
    [14] NARAYANA M, SIBANDA P, MOTSA S S, et al. Linear and nonlinear stability analysis of binary Maxwell fluid convection in a porous medium[J]. Heat and Mass Transfer,2012,48(5): 863-874.
    [15] WANG S, TAN W. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below[J]. Physics Letters A,2008,372(17): 3046-3050.
  • 加载中
计量
  • 文章访问数:  1156
  • HTML全文浏览量:  162
  • PDF下载量:  452
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-21
  • 修回日期:  2018-12-17
  • 刊出日期:  2019-08-01

目录

    /

    返回文章
    返回