留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解

张雪 孙峪怀

张雪, 孙峪怀. (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解[J]. 应用数学和力学, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352
引用本文: 张雪, 孙峪怀. (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解[J]. 应用数学和力学, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352
ZHANG Xue, SUN Yuhuai. Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352
Citation: ZHANG Xue, SUN Yuhuai. Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352

(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解

doi: 10.21656/1000-0887.390352
基金项目: 国家自然科学基金(11371267);四川省自然科学重点基金(2012ZA135)
详细信息
    作者简介:

    张雪(1992—),女,硕士(通讯作者. E-mail: 1443773002@qq.com).

  • 中图分类号: O175.29

Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations

Funds: The National Natural Science Foundation of China(11371267)
  • 摘要: 首先,运用拟设方法和动力系统分支方法,获得了(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的奇异孤子解、 亮孤子解、 拓扑孤子解、 周期爆破波解、 孤立波解等.再利用MAPLE软件画出了KdV-Zakharov-Kuznetsov方程在不同条件下的分支相图.最后,讨论了行波解之间的联系.
  • [1] BIN L. The first integral method for some time fractional differential equations[J]. Journal of Mathematical Analysis and Applications,2012,395(2): 684-693.
    [2] BULENT K, MUSTAFA I. The first integral method for the time fractional Kaup-Boussinesq system with time dependent coefficient[J]. Applied Mathematics and Computation,2015,254: 70-74.
    [3] MEHMET G S, FEVZI E. The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method[J]. Applied Mathematical Modelling,2013,37(20/21): 8876-8885.
    [4] HASSEINE A, BART H J. Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes[J]. Applied Mathematical Modelling,2015,39(7): 1975-1984.
    [5] LORIN E, YANG X, ANTOINE X. Frozen Gaussian approximation based domain decomposition methods for the linear Schrodinger equation beyond the semi-classical regime[J]. Journal of Computational Physics,2016,315(2): 221-237.
    [6] JUN S D, TEMUER C L, RANDOLPH R, et al. The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations[J]. Computers and Mathematics With Applications,2013,66(5): 728-736.
    [7] TRUSHIT P, RAMAKANTA M. A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using Adomian decomposition Sumudu transform method[J]. Procedia Engineering,2015,127: 751-758.
    [8] EMRAH U, AHMET G. Solution of conformable fractional ordinary differential equations via differential transform method[J]. Optik,2016,128: 264-273.
    [9] SEAKWENG V, PIN L. On numerical contour integral method for fractional diffusion equations with variable coefficients[J]. Applied Mathematics Letters,2017,64: 137-142.
    [10] OZKAN G, HASAN A. Soliton solution of fractional-order nonlinear differential equations based on the exp-function method[J]. Optik,2016,127(20): 10076-10083.
    [11] OZKAN G, ESIN A, AHMET B, et al. Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation[J]. Computers and Mathematics With Applications,2016,71: 1259-1269.
    [12] EMAD A B, ABDEL S, GAMAL F H. Multi-wave solutions of the space-time fractional Burgers and Sharma-Tasso-Olver equations[J]. Ain Shams Engineering Journal,2016,7(1): 463-472.
    [13] MEHMET E, MOHAMMAD M, ABDULLAH S, et al. Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G -expansion scheme[J]. Optik,2016,127(22): 10490-10497.
    [14] SAHOO S, SAHA S R. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G′/G)-expansion method and improved (G′/G)-expansion method[J]. Physica A,2016,448: 265-282.
    [15] SAHOO S, SAHA S R. Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations[J]. Computers and Mathematics With Applications,2015,70(2): 158-166.
    [16] MACE R L, HELLBERG M A. The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves[J]. Physics of Plasmas,2001,8: 2169-2656.
    [17] MELIKE K, AHMET B. A novel analytical method for time-fractional differential equations[J]. Optik,2016,127(20): 8209-8214.
    [18] OZKAN G, ESIN A, AHMET B. Various methods for solving time fractional KdV-Zakharov-Kuznetsov equation[J]. AIP Conference Proceedings,2016,1738(1): 290013.
    [19] JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications,2006,51(9/10): 1367-1376.
    [20] JUMARIE G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions[J]. Applied Mathematics Letters,2009,22(3): 378-385.
    [21] SONG Ming, LIU Zhengrong, ZERRAD E, et al. Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation[J]. Applied Mathematics & Information Sciences,2013,7(4): 1333-1340.
    [22] BISWAS A, SONG M, HOURIA T, et al. Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion[J]. Applied Mathematics and Information Sciences,2013,8(3): 949-957.
    [23] CHOW S N, HALE J K. Method of Bifurcation Theory [M]. New York: Springer-Verlag, 1982.
    [24] GUCKENHEIMER J, HOMES P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1999.
  • 加载中
计量
  • 文章访问数:  1382
  • HTML全文浏览量:  182
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-21
  • 修回日期:  2019-07-08
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回