[1] |
BIN L. The first integral method for some time fractional differential equations[J]. Journal of Mathematical Analysis and Applications,2012,395(2): 684-693.
|
[2] |
BULENT K, MUSTAFA I. The first integral method for the time fractional Kaup-Boussinesq system with time dependent coefficient[J]. Applied Mathematics and Computation,2015,254: 70-74.
|
[3] |
MEHMET G S, FEVZI E. The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method[J]. Applied Mathematical Modelling,2013,37(20/21): 8876-8885.
|
[4] |
HASSEINE A, BART H J. Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes[J]. Applied Mathematical Modelling,2015,39(7): 1975-1984.
|
[5] |
LORIN E, YANG X, ANTOINE X. Frozen Gaussian approximation based domain decomposition methods for the linear Schrodinger equation beyond the semi-classical regime[J]. Journal of Computational Physics,2016,315(2): 221-237.
|
[6] |
JUN S D, TEMUER C L, RANDOLPH R, et al. The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations[J]. Computers and Mathematics With Applications,2013,66(5): 728-736.
|
[7] |
TRUSHIT P, RAMAKANTA M. A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using Adomian decomposition Sumudu transform method[J]. Procedia Engineering,2015,127: 751-758.
|
[8] |
EMRAH U, AHMET G. Solution of conformable fractional ordinary differential equations via differential transform method[J]. Optik,2016,128: 264-273.
|
[9] |
SEAKWENG V, PIN L. On numerical contour integral method for fractional diffusion equations with variable coefficients[J]. Applied Mathematics Letters,2017,64: 137-142.
|
[10] |
OZKAN G, HASAN A. Soliton solution of fractional-order nonlinear differential equations based on the exp-function method[J]. Optik,2016,127(20): 10076-10083.
|
[11] |
OZKAN G, ESIN A, AHMET B, et al. Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation[J]. Computers and Mathematics With Applications,2016,71: 1259-1269.
|
[12] |
EMAD A B, ABDEL S, GAMAL F H. Multi-wave solutions of the space-time fractional Burgers and Sharma-Tasso-Olver equations[J]. Ain Shams Engineering Journal,2016,7(1): 463-472.
|
[13] |
MEHMET E, MOHAMMAD M, ABDULLAH S, et al. Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G -expansion scheme[J]. Optik,2016,127(22): 10490-10497.
|
[14] |
SAHOO S, SAHA S R. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G′/G)-expansion method and improved (G′/G)-expansion method[J]. Physica A,2016,448: 265-282.
|
[15] |
SAHOO S, SAHA S R. Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations[J]. Computers and Mathematics With Applications,2015,70(2): 158-166.
|
[16] |
MACE R L, HELLBERG M A. The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves[J]. Physics of Plasmas,2001,8: 2169-2656.
|
[17] |
MELIKE K, AHMET B. A novel analytical method for time-fractional differential equations[J]. Optik,2016,127(20): 8209-8214.
|
[18] |
OZKAN G, ESIN A, AHMET B. Various methods for solving time fractional KdV-Zakharov-Kuznetsov equation[J]. AIP Conference Proceedings,2016,1738(1): 290013.
|
[19] |
JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications,2006,51(9/10): 1367-1376.
|
[20] |
JUMARIE G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions[J]. Applied Mathematics Letters,2009,22(3): 378-385.
|
[21] |
SONG Ming, LIU Zhengrong, ZERRAD E, et al. Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation[J]. Applied Mathematics & Information Sciences,2013,7(4): 1333-1340.
|
[22] |
BISWAS A, SONG M, HOURIA T, et al. Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion[J]. Applied Mathematics and Information Sciences,2013,8(3): 949-957.
|
[23] |
CHOW S N, HALE J K. Method of Bifurcation Theory [M]. New York: Springer-Verlag, 1982.
|
[24] |
GUCKENHEIMER J, HOMES P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1999.
|