## 留言板

(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解

 引用本文: 张雪, 孙峪怀. (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解[J]. 应用数学和力学, 2019, 40(12): 1345-1355.
ZHANG Xue, SUN Yuhuai. Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352
 Citation: ZHANG Xue, SUN Yuhuai. Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355.

## (3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的分支分析及其行波解

##### doi: 10.21656/1000-0887.390352

###### 作者简介:张雪(1992—)，女，硕士(通讯作者. E-mail: 1443773002@qq.com).
• 中图分类号: O175.29

## Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations

Funds: The National Natural Science Foundation of China(11371267)
• 摘要: 首先，运用拟设方法和动力系统分支方法,获得了(3+1)维时间分数阶KdV-Zakharov-Kuznetsov方程的奇异孤子解、 亮孤子解、 拓扑孤子解、 周期爆破波解、 孤立波解等.再利用MAPLE软件画出了KdV-Zakharov-Kuznetsov方程在不同条件下的分支相图.最后,讨论了行波解之间的联系.
•  [1] BIN L. The first integral method for some time fractional differential equations[J]. Journal of Mathematical Analysis and Applications,2012,395(2): 684-693. [2] BULENT K, MUSTAFA I. The first integral method for the time fractional Kaup-Boussinesq system with time dependent coefficient[J]. Applied Mathematics and Computation,2015,254: 70-74. [3] MEHMET G S, FEVZI E. The homotopy analysis method for solving the time-fractional Fornberg-Whitham equation and comparison with Adomian’s decomposition method[J]. Applied Mathematical Modelling,2013,37(20/21): 8876-8885. [4] HASSEINE A, BART H J. Adomian decomposition method solution of population balance equations for aggregation, nucleation, growth and breakup processes[J]. Applied Mathematical Modelling,2015,39(7): 1975-1984. [5] LORIN E, YANG X, ANTOINE X. Frozen Gaussian approximation based domain decomposition methods for the linear Schrodinger equation beyond the semi-classical regime[J]. Journal of Computational Physics,2016,315(2): 221-237. [6] JUN S D, TEMUER C L, RANDOLPH R, et al. The Adomian decomposition method with convergence acceleration techniques for nonlinear fractional differential equations[J]. Computers and Mathematics With Applications,2013,66(5): 728-736. [7] TRUSHIT P, RAMAKANTA M. A study on temperature distribution, efficiency and effectiveness of longitudinal porous fins by using Adomian decomposition Sumudu transform method[J]. Procedia Engineering,2015,127: 751-758. [8] EMRAH U, AHMET G. Solution of conformable fractional ordinary differential equations via differential transform method[J]. Optik,2016,128: 264-273. [9] SEAKWENG V, PIN L. On numerical contour integral method for fractional diffusion equations with variable coefficients[J]. Applied Mathematics Letters,2017,64: 137-142. [10] OZKAN G, HASAN A. Soliton solution of fractional-order nonlinear differential equations based on the exp-function method[J]. Optik,2016,127(20): 10076-10083. [11] OZKAN G, ESIN A, AHMET B, et al. Different methods for (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation[J]. Computers and Mathematics With Applications,2016,71: 1259-1269. [12] EMAD A B, ABDEL S, GAMAL F H. Multi-wave solutions of the space-time fractional Burgers and Sharma-Tasso-Olver equations[J]. Ain Shams Engineering Journal,2016,7(1): 463-472. [13] MEHMET E, MOHAMMAD M, ABDULLAH S, et al. Dark and singular optical solitons with Kundu-Eckhaus equation by extended trial equation method and extended G′/G -expansion scheme[J]. Optik,2016,127(22): 10490-10497. [14] SAHOO S, SAHA S R. Solitary wave solutions for time fractional third order modified KdV equation using two reliable techniques (G′/G)-expansion method and improved (G′/G)-expansion method[J]. Physica A,2016,448: 265-282. [15] SAHOO S, SAHA S R. Improved fractional sub-equation method for (3 + 1)-dimensional generalized fractional KdV-Zakharov-Kuznetsov equations[J]. Computers and Mathematics With Applications,2015,70(2): 158-166. [16] MACE R L, HELLBERG M A. The Korteweg-de Vries-Zakharov-Kuznetsov equation for electron-acoustic waves[J]. Physics of Plasmas,2001,8: 2169-2656. [17] MELIKE K, AHMET B. A novel analytical method for time-fractional differential equations[J]. Optik,2016,127(20): 8209-8214. [18] OZKAN G, ESIN A, AHMET B. Various methods for solving time fractional KdV-Zakharov-Kuznetsov equation[J]. AIP Conference Proceedings,2016,1738(1): 290013. [19] JUMARIE G. Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results[J]. Computers and Mathematics With Applications,2006,51(9/10): 1367-1376. [20] JUMARIE G. Table of some basic fractional calculus formulae derived from a modified Riemann-Liouvillie derivative for nondifferentiable functions[J]. Applied Mathematics Letters,2009,22(3): 378-385. [21] SONG Ming, LIU Zhengrong, ZERRAD E, et al. Singular solitons and bifurcation analysis of quadratic nonlinear Klein-Gordon equation[J]. Applied Mathematics & Information Sciences,2013,7(4): 1333-1340. [22] BISWAS A, SONG M, HOURIA T, et al. Solitons, shock waves, conservation laws and bifurcation analysis of Boussinesq equation with power law nonlinearity and dual dispersion[J]. Applied Mathematics and Information Sciences,2013,8(3): 949-957. [23] CHOW S N, HALE J K. Method of Bifurcation Theory [M]. New York: Springer-Verlag, 1982. [24] GUCKENHEIMER J, HOMES P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields [M]. New York: Springer-Verlag, 1999.
##### 计量
• 文章访问数:  1382
• HTML全文浏览量:  182
• PDF下载量:  345
• 被引次数: 0
##### 出版历程
• 收稿日期:  2018-12-21
• 修回日期:  2019-07-08
• 刊出日期:  2019-12-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈