[1] |
马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(11): 1119-1128.(MA Junhai, CHEN Yushu. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system[J]. Applied Mathematics and Mechanics,2001,22(11): 1119-1128.(in Chinese))
|
[2] |
马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(12): 1236-1242.(MA Junhai, CHEN Yushu. Study for the bifurcation topological structure and the global complicated character of a kind of non-linear finance system[J]. Applied Mathematics and Mechanics,2001,22(12): 1236-1242.(in Chinese))
|
[3] |
ZHANG R Y. Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos[J]. Journal of Applied Mathematics,2012,2012: 316390.
|
[4] |
PYRAGAS K. Continuous control of chaos by self-controlling feedback[J]. Physics Letters A,1992,170(6): 421-429.
|
[5] |
CHEN W C. Dynamics and control of a financial system with time-delayed feedbacks[J]. Chaos, Solitons & Fractals,2008,37(4): 1198-1207.
|
[6] |
姚洪兴, 潘虹, 齐丽丽. 一类含脉冲延迟反馈金融系统的稳定性分析[J]. 江苏大学学报(自然科学版), 2011,〖STHZ〗 32(2): 241-244.(YAO Hongxing, PAN Hong, QI Lili. Global exponential stability of a financial system with impulses and time-delayed feedbacks[J]. Journal of Jiangsu University(Science Edition),2011,32(2): 241-244.(in Chinese))
|
[7] |
RAO R F, ZHONG S M, WANG X R. Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks with p -Laplace diffusion and partially known transition rates via a differential inequality[J]. Advances in Difference Equations,2013,2013: 183.
|
[8] |
SONG Q K, YAN H, ZHAO Z J, et al. Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays[J]. Neural Networks,2016,81: 1-10.
|
[9] |
WANG L M, SONG Q K, LIU Y R, et al. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay[J]. Neurocomputing,2017,243: 49-59.
|
[10] |
岳东, 许世范, 刘永清. 脉冲时滞微分不等式及鲁棒控制设计中的应用[J]. 控制理论与应用, 1999,16(4): 519-524.(YUE Dong, XU Shifan, LIU Yongqing. Differential inequality with delay and impulse and its applications to design robust control[J]. Control Theory Applications,1999,16(4): 519-524.(in Chinese))
|
[11] |
张磊, 宋乾坤. 带有比例时滞的复值神经网络全局指数稳定性[J]. 应用数学和力学, 2018,39(5): 584-591.(ZHANG Lei, SONG Qiankun. Global exponential stability of complex-valued neural networks with proportional delays[J]. Applied Mathematics and Mechanics,2018,39(5): 584-591.(in Chinese))
|
[12] |
舒含奇, 宋乾坤. 带有时滞的Clifford值神经网络的全局指数稳定性[J]. 应用数学和力学, 2017,38(5): 513-525.(SHU Hanqi, SONG Qiankun. Global stability of Clifford-valued recurrent neural networks with mixed time-varying delays[J]. Applied Mathematics and Mechanics,2017,38(5): 513-525.(in Chinese))
|
[13] |
ZHANG X H, WU S L, LI K L. Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(3): 1524-1532.
|
[14] |
黎克麟, 曾意. 具有多滞后的区间非线性Lurie控制系统的鲁棒绝对稳定性[J]. 四川师范大学学报(自然科学版), 2007,30(1): 27-30.(LI Kelin, ZENG Yi. Robust absolute stability of interval nonlinear Lurie control systems with multi-delay[J]. Journal of Sichuan Normal University(Natural Scicence),2007,30(1): 27-30.(in Chinese))
|
[15] |
LI K L, ZHANG X H, LI Z A. Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay[J]. Chaos, Solitons & Fractals,2009,41(3): 1427-1434.
|
[16] |
曾德强, 吴开腾, 宋乾坤, 等. 时滞神经网络随机抽样控制的状态估计[J]. 应用数学和力学, 2018,39(7): 821-832.(ZENG Deqiang, WU Kaiteng, SONG Qiankun, et al. State estimation for delayed neural networks with stochastic sampled-data control[J]. Applied Mathematics and Mechanics,2018,39(7): 821-832.(in Chinese))
|
[17] |
RAO Ruofeng. Global stability of a Markovian jumping chaotic financial system with partially unknown transition rates under impulsive control involved in the positive interest rate[J]. Mathematics,2019,7(7): 579.
|