留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具概率延迟反馈金融系统的脉冲控制

阿子阿英 饶若峰 赵锋 黄鸿燕 王雪 刘浩

阿子阿英, 饶若峰, 赵锋, 黄鸿燕, 王雪, 刘浩. 具概率延迟反馈金融系统的脉冲控制[J]. 应用数学和力学, 2019, 40(12): 1409-1416. doi: 10.21656/1000-0887.400059
引用本文: 阿子阿英, 饶若峰, 赵锋, 黄鸿燕, 王雪, 刘浩. 具概率延迟反馈金融系统的脉冲控制[J]. 应用数学和力学, 2019, 40(12): 1409-1416. doi: 10.21656/1000-0887.400059
AZI Aying, RAO Ruofeng, ZHAO Feng, HUANG Hongyan, WANG Xue, LIU Hao. Impulse Control of Financial Systems With Probabilistic Delay Feedback[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1409-1416. doi: 10.21656/1000-0887.400059
Citation: AZI Aying, RAO Ruofeng, ZHAO Feng, HUANG Hongyan, WANG Xue, LIU Hao. Impulse Control of Financial Systems With Probabilistic Delay Feedback[J]. Applied Mathematics and Mechanics, 2019, 40(12): 1409-1416. doi: 10.21656/1000-0887.400059

具概率延迟反馈金融系统的脉冲控制

doi: 10.21656/1000-0887.400059
详细信息
    作者简介:

    阿子阿英(1997—),女,彝族(E-mail: ruopheng@hotmail.com);饶若峰(1969—),男,教授(通讯作者. E-mail: ruofengrao@163.com);赵锋(1995—),男(E-mail: rrf2@163.com);黄鸿燕(1997—),女(E-mail: rrf2003@163.com);王雪(1998—),女(E-mail: 2637214132@qq.com);刘浩(1996—),男(E-mail: 1278891455@qq.com).

  • 中图分类号: O175.13

Impulse Control of Financial Systems With Probabilistic Delay Feedback

  • 摘要: 研究了概率时滞脉冲金融系统平衡点的全局渐近稳定性问题。首先,通过定义合适的时滞分段区间上的随机变量,给出了概率时滞的脉冲金融系统的数学模型,根据脉冲微分不等式特点构造了一个简便合适的Lyapunov函数利用脉冲微分不等式引理、控制脉冲间隔与脉冲量以及概率时滞分析技巧,获得了较大时滞允许范畴下的平衡点的全局指数稳定,并通过数值实例验证了方法的可行性以及概率时滞的优势。特别地,稳定性判定准则的时滞允许上限的增大,扩大了准则的实用性.
  • [1] 马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(11): 1119-1128.(MA Junhai, CHEN Yushu. Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system[J]. Applied Mathematics and Mechanics,2001,22(11): 1119-1128.(in Chinese))
    [2] 马军海, 陈予恕. 一类非线性金融系统分岔混沌拓扑结构与全局复杂性研究[J]. 应用数学和力学, 2001,22(12): 1236-1242.(MA Junhai, CHEN Yushu. Study for the bifurcation topological structure and the global complicated character of a kind of non-linear finance system[J]. Applied Mathematics and Mechanics,2001,22(12): 1236-1242.(in Chinese))
    [3] ZHANG R Y. Bifurcation analysis for a kind of nonlinear finance system with delayed feedback and its application to control of chaos[J]. Journal of Applied Mathematics,2012,2012: 316390.
    [4] PYRAGAS K. Continuous control of chaos by self-controlling feedback[J]. Physics Letters A,1992,170(6): 421-429.
    [5] CHEN W C. Dynamics and control of a financial system with time-delayed feedbacks[J]. Chaos, Solitons & Fractals,2008,37(4): 1198-1207.
    [6] 姚洪兴, 潘虹, 齐丽丽. 一类含脉冲延迟反馈金融系统的稳定性分析[J]. 江苏大学学报(自然科学版), 2011,〖STHZ〗 32(2): 241-244.(YAO Hongxing, PAN Hong, QI Lili. Global exponential stability of a financial system with impulses and time-delayed feedbacks[J]. Journal of Jiangsu University(Science Edition),2011,32(2): 241-244.(in Chinese))
    [7] RAO R F, ZHONG S M, WANG X R. Delay-dependent exponential stability for Markovian jumping stochastic Cohen-Grossberg neural networks with p -Laplace diffusion and partially known transition rates via a differential inequality[J]. Advances in Difference Equations,2013,2013: 183.
    [8] SONG Q K, YAN H, ZHAO Z J, et al. Global exponential stability of impulsive complex-valued neural networks with both asynchronous time-varying and continuously distributed delays[J]. Neural Networks,2016,81: 1-10.
    [9] WANG L M, SONG Q K, LIU Y R, et al. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay[J]. Neurocomputing,2017,243: 49-59.
    [10] 岳东, 许世范, 刘永清. 脉冲时滞微分不等式及鲁棒控制设计中的应用[J]. 控制理论与应用, 1999,16(4): 519-524.(YUE Dong, XU Shifan, LIU Yongqing. Differential inequality with delay and impulse and its applications to design robust control[J]. Control Theory Applications,1999,16(4): 519-524.(in Chinese))
    [11] 张磊, 宋乾坤. 带有比例时滞的复值神经网络全局指数稳定性[J]. 应用数学和力学, 2018,39(5): 584-591.(ZHANG Lei, SONG Qiankun. Global exponential stability of complex-valued neural networks with proportional delays[J]. Applied Mathematics and Mechanics,2018,39(5): 584-591.(in Chinese))
    [12] 舒含奇, 宋乾坤. 带有时滞的Clifford值神经网络的全局指数稳定性[J]. 应用数学和力学, 2017,38(5): 513-525.(SHU Hanqi, SONG Qiankun. Global stability of Clifford-valued recurrent neural networks with mixed time-varying delays[J]. Applied Mathematics and Mechanics,2017,38(5): 513-525.(in Chinese))
    [13] ZHANG X H, WU S L, LI K L. Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(3): 1524-1532.
    [14] 黎克麟, 曾意. 具有多滞后的区间非线性Lurie控制系统的鲁棒绝对稳定性[J]. 四川师范大学学报(自然科学版), 2007,30(1): 27-30.(LI Kelin, ZENG Yi. Robust absolute stability of interval nonlinear Lurie control systems with multi-delay[J]. Journal of Sichuan Normal University(Natural Scicence),2007,30(1): 27-30.(in Chinese))
    [15] LI K L, ZHANG X H, LI Z A. Global exponential stability of impulsive cellular neural networks with time-varying and distributed delay[J]. Chaos, Solitons & Fractals,2009,41(3): 1427-1434.
    [16] 曾德强, 吴开腾, 宋乾坤, 等. 时滞神经网络随机抽样控制的状态估计[J]. 应用数学和力学, 2018,39(7): 821-832.(ZENG Deqiang, WU Kaiteng, SONG Qiankun, et al. State estimation for delayed neural networks with stochastic sampled-data control[J]. Applied Mathematics and Mechanics,2018,39(7): 821-832.(in Chinese))
    [17] RAO Ruofeng. Global stability of a Markovian jumping chaotic financial system with partially unknown transition rates under impulsive control involved in the positive interest rate[J]. Mathematics,2019,7(7): 579.
  • 加载中
计量
  • 文章访问数:  1130
  • HTML全文浏览量:  225
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-02-28
  • 刊出日期:  2019-12-01

目录

    /

    返回文章
    返回