## 留言板

 引用本文: 宁利中, 张珂, 宁碧波, 吴昊, 田伟利. 侧向加热腔体中的多圈型对流斑图[J]. 应用数学和力学, 2020, 41(3): 250-259.
NING Lizhong, ZHANG Ke, NING Bibo, WU Hao, TIAN Weili. Multi-Roll Type Convection Patterns in Cavities Heated Laterally[J]. Applied Mathematics and Mechanics, 2020, 41(3): 250-259. doi: 10.21656/1000-0887.400165
 Citation: NING Lizhong, ZHANG Ke, NING Bibo, WU Hao, TIAN Weili. Multi-Roll Type Convection Patterns in Cavities Heated Laterally[J]. Applied Mathematics and Mechanics, 2020, 41(3): 250-259.

• 中图分类号: O357

## Multi-Roll Type Convection Patterns in Cavities Heated Laterally

Funds: The National Natural Science Foundation of China(10872164)
• 摘要: 基于流体力学方程组的数值模拟，研究了倾角θ=90°时侧向加热的大高宽比腔体中的对流斑图.对于Prandtl数Pr=6.99的流体，在相对Rayleigh数2≤Rar≤25的范围内，腔体中发生的是单圈型对流斑图.对于Pr=0.027 2的流体，取Rar=13.9，随着计算时间的发展，腔体中由最初的单圈型对流斑图过渡到多圈型对流斑图，这是出现在侧向加热大高宽比腔体中的新型对流斑图.对不同Rar情况的计算结果表明，Rar对对流斑图的形成存在明显的影响.当Rar≤4.4时是单圈型对流滚动；当Rar=8.9~11.1时是过渡状态；当Rar≥13.9时是多圈型对流滚动.对流最大振幅和Nusselt数Nu随着相对Rayleigh数的增加而增加.该对流斑图与Pr=6.99时对流斑图的比较说明，对流斑图的形成依赖于Prandtl数.
•  [1] CROSS M C, HOHENBERG P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 998-1011. [2] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics,2000,32: 709-778. [3] KNOBLOCH E, MERCADER I, BATISTE O, et al. Convectons in periodic and bounded domains[J]. Fluid Dynamics Research,2010,42: 025505. [4] WATANABE T, IIMA M, NISHIURA Y. Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243. [5] MERCADER I, BATISTE O, ALONSO A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606. [6] TARAUT A V, SMORODIN B L, LUCKE M. Collisions of localized convection structures in binary fluid mixtures[J]. New Journal of Physics,2012,14(9): 093055. [7] MERCADER I, BATISTE O, ALONSO A, et al. Traveling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-265. [8] 宁利中, 齐昕, 周洋, 等. 混合流体Rayleigh-Bénard 行波对流中的缺陷结构[J]. 物理学报, 2009,58(4): 2528-2534.(NING Lizhong, QI Xin, ZHOU Yang, et al. Defect structures of Rayleigh-Bénard travelling wave convection in binary fluid mixtures[J]. Acta Physica Sinica,2009,58(4): 2528-2534.(in Chinese)) [9] 宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学: 物理 力学 天文学, 2009,39(5): 746-751.(NING Lizhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2009,39(5): 746-751.(in Chinese)) [10] 宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401.(NING Lizhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J]. Acta Physica Sinica,2014,63(10): 104401.(in Chinese)) [11] 宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Lizhong, WANG Yongqi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese)) [12] 宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Bénard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401.(NING Lizhong, HU Biao, NING Bibo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401.(in Chinese)) [13] DANIELS K E, BODENSCHATZ E. Defect turbulence in inclined layer convection[J]. Physical Review Letters,2002,88: 034501. [14] DANIELS K E, PLAPP B B, BODENSCHATZ E. Pattern formation in inclined layer convection[J]. Physical Review Letters,2000,84: 5320-5323. [15] DANIELS K E, BRAUSCH O, PESCH W, et al. Competition and bistability of ordered undulations and undulation chaos in inclined layer convection[J]. Journal of Fluid Mechanics,2008,597: 261-282. [16] BUSSE F H, CLEVER R M. Three-dimensional convection in an inclined layer heated from below[J]. Journal of Engineering Mathematics, 1992,26(1): 1-19. [17] RUTH D W, RAITHBY G D, HOLLANDS K D T. On the secondary instability in inclined air layers[J]. Journal of Fluid Mechanics,1980,96: 481-492. [18] RUTH D W, RAITHBY G D, HOLLANDS K D T. On free convection experiments in inclined air layers heated from below[J]. Journal of Fluid Mechanics,1980,96: 461-469. [19] XU F. Convective instability of the vertical thermal boundary layer in a differentially heated cavity[J]. International Communications in Heat & Mass Transfer,2014,52(3): 8-14. [20] XU F, PATTERSON J C, LEI C. On the double-layer structure of the thermal boundary layer in a differentially heated cavity[J]. International Journal of Heat & Mass Transfer,2008,51(15): 3803-3815. [21] 徐丰, 崔会敏. 侧加热腔内的自然对流[J]. 力学进展, 2014,44: 1-40.(XU Feng, CUI Huimin. Natural convection in a differentially heated cavity[J]. Advances in Mechanics,2014,44: 1-40.(in Chinese)) [22] YAHATA H. Thermal convection in a vertical slot with lateral heating[J]. Journal of the Physical Society of Japan,1997,66(11): 3434-3443. [23] 李开继, 宁利中, 宁碧波, 等. 格拉晓夫数Gr对侧向局部加热腔体内对流结构的研究[J]. 力学季刊, 2016,37(1): 131-138.(LI Kaiji, NING Lizhong, NING Bibo, et al. Effect of Grashof number Gr on convection structure of rectangular cavity heated locally from side[J]. Chinese Quarterly of Mechanics,2016,37(1): 131-138.(in Chinese)) [24] 李开继, 宁利中, 宁碧波, 等. 侧壁面正弦加热条件下自然对流研究[J]. 应用力学学报, 2017,34(4): 641-646.(LI Kaiji, NING Lizhong, NING Bibo, et al. Study on natural convection sinusoidal heating from side[J]. Chinese Journal of Applied Mechanics,2017,34(4): 641-646.(in Chinese)) [25] 胡彪, 宁利中, 宁碧波, 等. 水平来流对扰动成长和对流周期性的影响[J]. 应用数学和力学, 2017,38(10): 1103-1111.(HU Biao, NING Lizhong, NING Bibo, et al. Effects of horizontal flow on perturbation growth and convection periodicity[J]. Applied Mathematics and Mechanics,2017, 38(10): 1103-1111.(in Chinese)) [26] 宁利中, 渠亚伟, 宁碧波, 等. 一种新的混合流体对流竖向镜面对称对传波斑图[J]. 应用数学和力学, 2017,38(11): 1230-1239.(NING Lizhong, QU Yawei, NING Bibo, et al. A new type of counterpropagating wave pattern of vertical mirror symmetry in binary fluid convection[J]. Applied Mathematics and Mechanics,2017,38(11): 1230-1239.(in Chinese))

##### 计量
• 文章访问数:  586
• HTML全文浏览量:  65
• PDF下载量:  251
• 被引次数: 0
##### 出版历程
• 收稿日期:  2019-05-09
• 修回日期:  2019-05-24
• 刊出日期:  2020-03-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈