留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多切换传输的复变量混沌系统的有限时组合同步控制

李天择 郭明 陈向勇 张涵 马建宇

李天择, 郭明, 陈向勇, 张涵, 马建宇. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206
引用本文: 李天择, 郭明, 陈向勇, 张涵, 马建宇. 基于多切换传输的复变量混沌系统的有限时组合同步控制[J]. 应用数学和力学, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206
LI Tianze, GUO Ming, CHEN Xiangyong, ZHANG Han, MA Jianyu. Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206
Citation: LI Tianze, GUO Ming, CHEN Xiangyong, ZHANG Han, MA Jianyu. Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission[J]. Applied Mathematics and Mechanics, 2019, 40(11): 1299-1308. doi: 10.21656/1000-0887.400206

基于多切换传输的复变量混沌系统的有限时组合同步控制

doi: 10.21656/1000-0887.400206
基金项目: 国家自然科学基金(61403179;61877033);山东省自然科学基金(ZF2019M021;ZR2019BF003;ZR2019QF004);山东省高等学校科研计划(J18KA354);山东省大学生科学研究项目(18SSR062)
详细信息
    作者简介:

    李天择(1999—), 男(E-mail: lyulitianze2019@163.com);郭明(1986—), 男, 讲师, 博士(E-mail: guoming0537@126.com);陈向勇(1983—), 男, 教授, 博士, 硕士生导师(通讯作者. E-mail: cxy8305@163.com).

  • 中图分类号: O231.2

Finite-Time Combination Synchronization Control of Complex-Variable Chaotic Systems With Multi-Switching Transmission

Funds: The National Natural Science Foundation of China(61403179;61877033)
  • 摘要: 针对一类复变量混沌系统, 研究了基于多切换传输的有限时同步控制问题.首先,针对网络信号在传输过程中的同步模式,分析了多个混沌系统之间的多切换同步行为.其次,基于预设的切换传输规则,给出了有限时组合同步的定义.进而,依据有限时稳定性理论,设计了一类实现快速同步的控制器,并给出了有限时组合同步的充分条件.最后,通过数值仿真和分析验证了所设计控制方案的有效性.
  • [1] PECORA L M, CARROLL T L. Synchronization in chaotic systems[J]. Physical Review Letters,1990,64(8): 821-824.
    [2] 王兴元. 混沌系统的同步及在保密通信中的应用[M]. 北京: 科学出版社, 2012.(WANG Xingyuan. Synchronization of Chaotic System and Its Application in Secure Communication [M]. Beijing: Science Press, 2012.(in Chinese))
    [3] 任涛, 井元伟, 姜囡. 混沌同步控制方法及在保密通信中的应用[M]. 北京: 机械工业出版社, 2015.(REN Tao, JING Yuanwei, JIANG Nan. Chaos Synchronization Control Methods and Appications on Secure Communication [M]. Beijing: China Machine Press, 2015.(in Chinese))
    [4] 张玮玮, 吴然超. 基于线性控制的分数阶混沌系统的对偶投影同步[J]. 应用数学和力学, 2016,37(7): 710-717.(ZHANG Weiwei, WU Ranchao. Dual projective synchronization of fractional-order chaotic systems with a linear controller[J]. Applied Mathematics and Mechanics,2016,37(7): 710-717.(in Chinese))
    [5] 张玮玮, 陈定元, 吴然超, 等. 一类基于忆阻器分数阶时滞神经网络的修正投影同步[J]. 应用数学和力学, 2018,39(2): 239-248.(ZHANG Weiwei, CHEN Dingyuan, WU Ranchao, et al. Modified-projective-synchronization of memristor-based fractional-order delayed neural networks[J]. Applied Mathematics and Mechanics,2018,39(2): 239-248.(in Chinese))
    [6] CHEN X Y, QIU J L, CAO J D, et al. Hybrid synchronization behavior in an array of coupled chaotic systems with ring connection[J]. Neurocomputing,2016,173(3): 1299-1309.
    [7] CHEN X Y, PARK JU H, CAO J D, et al. Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances[J]. Applied Mathematics and Computation,2017,308: 161-173.
    [8] CHEN X Y, CAO J D, PARK JU H, et al. Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control[J]. Neurocomputing,2018,273: 9-21.
    [9] 刘艳, 吕翎. N个异结构混沌系统的环链耦合同步[J]. 应用数学和力学, 2008,29(10): 1181-1190.(LIU Yan, L Ling. Synchronization of N different coupled chaotic systems with ring and chain connections[J]. Applied Mathematics and Mechanics,2008,29(10): 1181-1190.(in Chinese))
    [10] FOWLER A C, MCGUINNES M J, GIBBON J D. The complex Lorenz equations[J]. Physica D,1982,4: 139-163.
    [11] MAHMOUD G M, MAHMOUD E E, ARAFAB A A. Projective synchronization for coupled partially linear complex-variable systems with known parameters[J]. Mathematical Methods in the Applied Science,2017,40(4): 1214-1222.
    [12] LIU J, LIU S T. Complex modified function projective synchronization of complex chaotic systems with known and unknown complex parameters[J]. Applied Mathematical Modelling,2017,48: 440-450.
    [13] SUN J W, SHEN Y. Adaptive anti-synchronization of chaotic complex systems and chaotic real systems with unknown parameters[J]. Journal of Vibration and Control,2016,22: 2992-3003.
    [14] CHEN X Y, CAO J D, PARK JU H, et al. Finite-time complex function synchronization of multiple complex-variable chaotic systems with network transmission and combination mode[J]. Journal of Vibration and Control,2018,24(22): 5461-5471.
    [15] SUN J W, CUI G, WANG Y, et al. Combination complex synchronization of three chaotic complex systems[J]. Nonlinear Dynamics,2015,79(2): 953-965.
    [16] UCAR A, LONNGREN K E, BAI E W. Multi-switching synchronization of chaotic systems with active controllers[J]. Chaos, Solitons and Fractals,2008,38(1): 254-262.
    [17] WANG X Y, SUN P. Multi-switching synchronization of chaotic system with adaptive controllers and unknown parameters[J]. Nonlinear Dynamics,2011,63(4): 599-609.
    [18] ZHENG S. Multi-switching combination synchronization of three different chaotic systems via nonlinear control[J]. Optik,2016,127(21): 10247-10258.
    [19] VINCENT U E, SASEYI A O, MCCLINTOCK P V E. Multi-switching combination synchronization of chaotic systems[J]. Nonlinear Dynamics,2015,80(1/2): 845-854.
    [20] CHEN X Y, CAO J D, PARK JU H, et al. Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode[J]. Journal of the Franklin Institute,2018,355(5): 2892-2911.
    [21] SUN J W, WANG Y, WANG Y W, et al. Finite-time synchronization between two complex-variable chaotic systems with unknown parameters via nonsingular terminal sliding mode control[J]. Nonlinear Dynamics,2017,85(2): 1105-1117.
    [22] SUN J W, WU Y Y, CUI G Z, et al. Finite-time real combination synchronization of three complex-variable chaotic systems with unknown parameters via sliding mode control[J]. Nonlinear Dynamics,2017,88(3): 1677-1690.
    [23] CHEN X Y, HUANG T W, CAO J D, et al. Finite-time multi-switching sliding mode synchronization for multiple uncertain complex chaotic systems with network transmission mode[J]. IET Control Theory and Applications,2019,13(9): 1246-1257.
    [24] ZHANG D Y, MEI J, MI P. Global finite-time synchronization of different dimensional chaotic systems[J]. Applied Mathematical Modelling,2017,48: 303-315.
    [25] CHEN X Y, CAO J D, PARK J H, et al. Finite-time control of multiple different-order chaotic systems with two network synchronization modes[J]. Circuits Systems and Signal Process,2018,37(3): 1081-1097.
  • 加载中
计量
  • 文章访问数:  943
  • HTML全文浏览量:  188
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-05
  • 修回日期:  2019-10-08
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回