留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基础激励下Timoshenko梁冲击失效准则设计方法

王乐 李冬

王乐, 李冬. 基础激励下Timoshenko梁冲击失效准则设计方法[J]. 应用数学和力学, 2020, 41(10): 1072-1082. doi: 10.21656/1000-0887.400318
引用本文: 王乐, 李冬. 基础激励下Timoshenko梁冲击失效准则设计方法[J]. 应用数学和力学, 2020, 41(10): 1072-1082. doi: 10.21656/1000-0887.400318
WANG Le, LI Dong. A Design Method of Impact Failure Criteria for Timoshenko Beams Under Support Excitations[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1072-1082. doi: 10.21656/1000-0887.400318
Citation: WANG Le, LI Dong. A Design Method of Impact Failure Criteria for Timoshenko Beams Under Support Excitations[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1072-1082. doi: 10.21656/1000-0887.400318

基础激励下Timoshenko梁冲击失效准则设计方法

doi: 10.21656/1000-0887.400318
详细信息
    作者简介:

    王乐(1984—),高级工程师(通讯作者. E-mail: aabeau@163.com).

  • 中图分类号: O347

A Design Method of Impact Failure Criteria for Timoshenko Beams Under Support Excitations

  • 摘要: 给出了基础激励下Timoshenko梁冲击失效准则设计方法,建立了基于Timoshenko梁的冲击动力学模型.通过求解系统运动方程并结合边界条件,给出了系统固有频率方程,给出了固有振型的计算方法.为了克服基础激励下冲击响应求解的困难,对Timoshenko梁的位移响应进行了假设,求解了系统的线位移和角位移冲击响应,进而得到了任意截面的内力,以及截面的最大von Mises等效应力,基于von Mises屈服准则,给出了分别采用位移、速度和加速度确定失效准则的方法.典型算例的冲击响应计算结果表明,在20~5 000 Hz频率范围内,算例中的Timoshenko梁存在3种失效模式,分别是根部、中部附近和末端发生屈服破坏.针对每种失效模式,分别给出了以最大可用位移幅值、速度幅值和加速度幅值表示的冲击失效准则.
  • [1] 高庆, 商霖, 苏大亮, 等. 某弹簧分离装置冲击环境统计分析及天地差异性研究[J]. 振动与冲击, 2017,36(17): 206-210.(GAO Qing, SHANG Lin, SU Daliang, et al. Shock environment statistical analysis for a spring separate device and shock data difference between flight test and ground one[J]. Journal of Vibration and Shock,2017,36(17): 206-210.(in Chinese))
    [2] 王朋朋, 高博, 艾永强, 等. 基于冲击响应分析的星载可展天线解锁策略优化[J]. 振动与冲击, 2017,36(10): 57-62.(WANG Pengpeng, GAO Bo, AI Yongqiang, et al. Release strategy optimization for deployable satellite antennas based on shock response analysis[J]. Journal of Vibration and Shock,2017,36(10): 57-62.(in Chinese))
    [3] YU J, JONES N. Numerical simulation of a clamped beam under impact loading[J]. Computers & Structures,1989,32(2): 281-293.
    [4] YAMAMOTO S, SATO K, KOSEKI H. A study on lateral impact of Timoshenko beam[J]. Computational Mechanics,1990,6(2): 101-108.
    [5] KR MAITI D, SINHA P K. Impact behavior of thick laminated composite beams[J]. Journal of Reinforced Plastics and Composites,1995,14(3): 255-279.
    [6] 陈镕, 郑海涛, 薛松涛, 等. 无约束Timoshenko梁横向冲击响应分析[J]. 应用数学和力学, 2004,25(11): 1195-1202.(CHEN Rong, ZHENG Haitao, XUE Songtao, et al. Analysis on transverse impact response of an unrestrained Timoshenko beam[J]. Applied Mathematics and Mechanics,2004,25(11): 1195-1202.(in Chinese))
    [7] XING Y F, QIAO Y S, ZHU D C, et al. Elastic impact on finite Timoshenko beam[J]. Acta Mechanica Sinica(English Series),2002,18(3): 252-263.
    [8] 邢誉峰, 谢文剑, 诸德超. 厚度效应对梁冲击响应的影响[J]. 力学学报, 2004,36(2): 184-190.(XING Yufeng, XIE Wenjian, ZHU Dechao. Influence of thickness effects on impact responses of beam[J]. Acta Mechanica Sinica,2004,36(2): 184-190.(in Chinese))
    [9] 邢誉峰. 有限长Timoshenko梁弹性碰撞接触瞬间的动态特性[J]. 力学学报, 1999,31(1): 68-74.(XING Yufeng. The characteristics of Timoshenko beam during the process of elastic impact and contact[J]. Acta Mechanica Sinica,1999,31(1): 68-74.(in Chinese))
    [10] 田金梅, 邢誉峰, 谢文剑. 复合材料叠层梁的冲击响应特性[J]. 振动与冲击, 2006,25(4): 1-4.(TIAN Jinmei, XING Yufeng, XIE Wenjian. Impact responses of composite laminated beam[J]. Journal of Vibration and Shock,2006,25(4): 1-4.(in Chinese))
    [11] 陈万祥, 郭志昆. 粘弹性边界梁在低速冲击下的动力响应分析[J]. 振动与冲击, 2008,27(12): 69-72.(CHEN Wanxiang, GUO Zhikun. Dynamic responses of beams with flexible supports subjected to low velocity impact[J]. Journal of Vibration and Shock,2008,27(12): 69-72.(in Chinese))
    [12] 张嫄, 董满生, 唐飞. 冲击荷载作用下水中悬浮隧道的位移响应[J]. 应用数学和力学, 2016,37(5): 483-491.(ZHANG Yuan, DONG Mansheng, TANG Fei. Displacement responses of submerged floating tunnels under impact loads[J]. Applied Mathematics and Mechanics,2016,37(5): 483-491.(in Chinese))
    [13] 余同希. 端头带有质量块的悬臂梁在冲击载荷下的剪切失效[J]. 爆炸与冲击, 1993,13(2): 97-104.(YU Tongxi. Shear failure of a cantilever with an attached mass block at the tip under impulsive loading[J]. Explosion and Shock Waves,1993,13(2): 97-104.(in Chinese))
    [14] 康婷, 许金余, 白应生, 等. 爆炸冲击荷载作用下拱结构的弹塑性动力响应研究[J]. 兵工学报, 2013,34(9): 1097-1102.(KANG Ting, XU Jinyu, BAI Yingsheng, et al. Elastic-plastic analysis on dynamic response of arch subjected to explosive impact[J]. Acta Armamentarii,2013,34(9): 1097-1102.(in Chinese))
    [15] 王乐, 王亮. 一种新的计算Timoshenko梁截面剪切系数的方法[J]. 应用数学和力学, 2013,34(7): 756-763.(WANG Le, WANG Liang. A new method of obtaining Timoshenko’s shear coefficients[J]. Applied Mathematics and Mechanics,2013,34(7): 756-763.(in Chinese))
  • 加载中
计量
  • 文章访问数:  400
  • HTML全文浏览量:  65
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-21
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回