留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟

黄一帆 娄钦

黄一帆, 娄钦. T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟[J]. 应用数学和力学, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341
引用本文: 黄一帆, 娄钦. T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟[J]. 应用数学和力学, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341
HUANG Yifan, LOU Qin. Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341
Citation: HUANG Yifan, LOU Qin. Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1125-1145. doi: 10.21656/1000-0887.400341

T型微通道内的幂律流体液滴破裂行为的格子Boltzmann方法模拟

doi: 10.21656/1000-0887.400341
基金项目: 国家自然科学基金(51976128);上海市自然科学基金(19ZR1435700)
详细信息
    作者简介:

    黄一帆(1993—),男,硕士生(E-mail: avatarbluesky133@gmail.com);娄钦(1984—),女,副教授,博士,博士生导师(通讯作者. E-mail: louqin560616@163.com).

  • 中图分类号: O373|O357|O359+.1

Power-Law Fluid Droplet Dynamic Behaviors in T-Junction Micro-Channels With the Lattice Boltzmann Method

Funds: The National Natural Science Foundation of China(51976128)
  • 摘要: 采用格子Boltzmann方法(LBM)研究了T型微通道内幂律流体液滴运动行为及其流型相图.主要研究了液滴幂律指数n对液滴破裂时颈部厚度、前端运动距离等形变特性以及流型相图的影响.数值结果表明,幂律流体液滴在T型微通道内存在阻塞破裂、隧道破裂以及不破裂三种流型.在阻塞破裂过程中,液滴颈部厚度随时间逐渐减小,且n越大,液滴颈部厚度随时间减小得越慢.同时液滴前端运动距离随时间线性增加,且随液滴幂律指数n增加,液滴破裂时前端运动距离越长.在隧道破裂过程中,液滴颈部厚度也随时间逐渐减小,与阻塞破裂相似,n越大液滴颈部厚度减小得越慢.与阻塞破裂相比,液滴隧道破裂时对应的临界颈部厚度有所增加,且液滴前端运动距离随时间先快速增加,然后再缓慢增加,隧道宽度随时间近似呈对数增长.此外,液滴未破裂时液滴颈部厚度以及液滴前端运动距离出现波动现象.液滴的幂律指数n越大,液滴越容易破裂,但越不容易达到阻塞破裂.根据数值模拟结果得到了各流型相图之间幂函数形式临界分界线的拟合公式,该拟合公式可以预测不同流型.
  • [1] 陈金阳, 李春荣, 吉邢虎, 等. 微流控液滴操控技术及其生物分析应用[J]. 分析科学学报, 2018,34(3): 422-428.(CHEN Jinyang, LI Chunrong, JI Xinghu, et al. Droplet manipulation in microfluidics and bioanalytical applications[J]. Journal of Analytical Science,2018,34(3): 422-428.(in Chinese))
    [2] PATABADIGE D E W, SADEGHI J, KALUBOWILAGE M, et al. Integrating optical fiber bridges in microfluidic devices to create multiple excitation/detection points for single cell analysis[J]. Analytical Chemistry,2016,88(20): 9920-9925.
    [3] HUDGINS D, ABHARI R S. Rupture time of droplets impacted by a burst of picosecond laser pulses[J]. Physical Review E,2019,99(3): 1-6.
    [4] HOANG D A, PORTELA L M, KLEIJN C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics,2013,717(4): 1-11.
    [5] GLAWDEL T, ELBUKEN C, REN C L. Droplet formation in microfluidic T-junction generators operating in the transitional regime, Ⅱ: modeling[J]. Physical Review E,2012,85(1/2): 1-12.
    [6] SUN X, ZHU C Y, FU T T, et al. Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction[J]. Chemical Engineering Science,2018,188: 158-169.
    [7] MASHAGHI S, OIJEN A M V. Droplet microfluidics for kinetic studies of viral fusion[J]. Biomicrofluidics,2016,10(2): 1-8.
    [8] PI Q M, MAHARJAN S, YAN X, et al. Microfluidic bioprinting: digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Advanced Materials,2018,30(43): 1-10.
    [9] 李樊, 朱珉, 付向宁. T微流控分析芯片在循环肿瘤细胞检测中的运用[J]. 医学与哲学, 2014,35(3): 72-74.(LI Fan, ZHU Min, FU Xiangning. The use of microfluidic device in the detection of the circulating Tumor cells [J]. Medicine & Philosophy,2014,35(3): 72-74.(in Chinese))
    [10] HOU Y, XIE W Y, ACHAZI K, et al. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells[J]. Acta Biomaterialia,2018,77: 28-37.
    [11] GUNES D Z. Microfluidics for food science and engineering[J]. Current Opinion in Food Science,2018,21: 57-65.
    [12] ADAMSON D N, MUSTAFI D, ZHANG J X J, et al. Production of arrays of chemically distinct nanolitre plugs via repeated splitting in microfluidic devices[J]. Lab on a Chip,2006,6(9): 1178-1186.
    [13] 王维萌, 马一萍, 王澎, 等. T型微通道中微液滴被动破裂的可视化实验研究[J]. 工程热物理学报, 2015,36(2): 338-341.(WANG Weimeng, MA Yiping, WANG Peng, et al. The visualization study of breakup of drops in T-shaped micro-fluidic devices[J]. Journal of Engineering Thermophysics,2015,36(2): 338-341.(in Chinese))
    [14] JULLIEN M C, CHING M J T M, COHEN C, et al. Droplet breakup in microfluidic T-junctions at small capillary numbers[J]. Physics of Fluids,2009,21(7): 1-6.
    [15] HARINGA C, JONG C D, HOANG D A, et al. Breakup of elongated droplets in microfluidic T-junctions[J]. Physical Review Fluids,2019,4(2): 1-14.
    [16] SAMIE M, SALARI A, SHAFII M B. Breakup of microdroplets in asymmetric T junctions[J]. Physical Review E,2013,87(5): 1-8.
    [17] 王澎, 陈斌. T型微流控芯片中微液滴破裂的数值模拟[J]. 化工学报, 2012,63(4): 999-1003.(WANG Peng, CHEN Bin. Numerical simulation of micro-droplet breakup in T-shaped micro-fluidic chip[J]. Ciesc Journal,2012,〖STHZ〗 63(4): 999-1003.(in Chinese))
    [18] CHEN B, LI G J, WANG W M, et al. 3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method[J]. Applied Thermal Engineering,2015,88: 94-101.
    [19] STONE H A. Dynamics of drop deformation and breakup in viscous flows[J]. Annual Review of Fluid Mechanics,2003,26(1): 65-102.
    [20] 娄钦, 罗祝清, 王俊, 等. 基于Soret和Dufour效应的方腔内双扩散自然对流振荡特性研究[J]. 应用数学和力学, 2018,39(2): 147-159.(LOU Qin, LUO Zhuqing, WANG Jun, et al. Oscillating characteristics of double diffusive natural convection with soret and dufour effects in square cavities[J]. Applied Mathematics and Mechanics,2018,39(2): 147-159.(in Chinese))
    [21] 陆威, 王婷婷, 徐洪涛, 等. 多孔介质复合方腔双扩散混合对流LBM模拟[J]. 应用数学和力学, 2017,38(7): 780-793.(LU Wei, WANG Tingting, XU Hongtao, et al. LBM simulation of double diffusive mixed convection in a porous medium composite cavity[J]. Applied Mathematics and Mechanics,2017,38(7): 780-793.(in Chinese))
    [22] 谢驰宇, 张建影, 王沫然. 液滴在固体平表面上均匀蒸发过程的格子Boltzmann模拟[J]. 应用数学和力学, 2014,35(3): 247-253.(XIE Chiyu, ZHANG Jiangying, WANG Moran, et al. Lattice Boltzmann simulation of droplet evaporation on flat solid surface[J]. Applied Mathematics and Mechanics,2014,35(3): 247-253.(in Chinese))
    [23] LIU H H, JU Y P, WANG N N, et al. Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference[J]. Physical Review E,2015,92(3): 1-12.
    [24] HALLIDAY I, LAW R, CARE C M, et al. Improved simulation of drop dynamics in a shear flow at low Reynolds and capillary number[J]. Physical Review E,2006,73(2): 1-11.
    [25] HALLIDAY I, HOLLIS A P, CARE C M. Lattice Boltzmann algorithm for continuum multicomponent flow[J]. Physical Review E,2007,76(2): 1-13.
    [26] FU Y H, BAI L, JIN Y, et al. Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference[J]. Physics of Fluids,2017,29(3): 1-12.
    [27] CHEN Y P, DENG Z L. Hydrodynamics of a droplet passing through a microfluidic T-junction[J]. Journal of Fluid Mechanics,2017,819: 401-434.
    [28] 娄钦, 黄一帆, 李凌. 不可压幂律流体气-液两相流格子Boltzmann模型及其在多孔介质内驱替问题中的应用[J]. 物理学报, 2019,〖STHZ〗 68(21): 191-203.(LOU Qin, HUANG Yifan, LI Ling. Lattice Boltzmann model of gas-liquid two-phase flow of incomprssible power-law fluid and its application in the displacement problem of porous media[J]. Acta Physica Sinica,2019,68(21): 191-203.(in Chinese))
    [29] GUO Z L, ZHENG C G, SHI B C. Force imbalance in lattice Boltzmann equation for two-phase flows[J]. Physical Review E,2011,83(2/3): 1-8.
    [30] DAVIES A R D, SUMMERS J L, Wilson M C T. On a dynamic wetting model for thefinite-density multiphase lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics,2006,20(6): 415-425.
    [31] LADD A J C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation, part Ⅰ: theoretical foundation[J]. Journal of Fluid Mechanics,1993,271(3): 285-310.
    [32] LOU Q, LI T, YANG M. Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method[J].Journal of Applied physics. 2019,126(3): 034301.
    [33] LOU Q, GUO Z L, SHI B C. Evaluation of outflow boundary conditions for two-phase lattice Boltzmann equation[J]. Physical review E,2013,87(6): 1-16.
    [34] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟[J]. 物理学报, 2016,65(20): 139-148.(LIANG Hong, CHAI Zhenhua, SHI Baochang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel[J]. Acta Physica Sinica, 2016,65(20): 139-148.(in Chinese))
    [35] SHI Y, TANG G H. Simulation of Newtonian and non-Newtonian rheology behavior of viscous fingering in channels by the lattice Boltzmann method[J]. Computers and Mathematics With Applications,2014,68(10): 1279-1291.
    [36] SHI Y, TANG G H. Non-Newtonian rheology property for two-phase flow on fingering phenomenon in porous media using the lattice Boltzmann method[J]. Journal of Non-Newtonian Fluid Mechanics,2016,229: 86-95.
    [37] SONTTI S G, ATTA A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal,2017,330: 245-261.
  • 加载中
计量
  • 文章访问数:  3341
  • HTML全文浏览量:  55
  • PDF下载量:  330
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-01-30
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回