留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡Reynolds数下Stokes层的间歇湍流特性

孔玮 李佳

孔玮, 李佳. 过渡Reynolds数下Stokes层的间歇湍流特性[J]. 应用数学和力学, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382
引用本文: 孔玮, 李佳. 过渡Reynolds数下Stokes层的间歇湍流特性[J]. 应用数学和力学, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382
KONG Wei, LI Jia. Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382
Citation: KONG Wei, LI Jia. Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1171-1182. doi: 10.21656/1000-0887.400382

过渡Reynolds数下Stokes层的间歇湍流特性

doi: 10.21656/1000-0887.400382
基金项目: 国家自然科学基金(11702107)
详细信息
    作者简介:

    孔玮(1986—),男,讲师,博士(E-mail: kongwei203@163.com);李佳(1984—),女,讲师,博士(通讯作者. E-mail: lijia107@163.com).

  • 中图分类号: O357.41

Intermittent Turbulence Characteristics in the Stokes Layer for a Transitional Reynolds Number

Funds: The National Natural Science Foundation of China(11702107)
  • 摘要: 针对典型的过渡Reynolds数Re=495,以壁面的表面粗糙度为激励,用数值模拟的方法研究了Stokes层的间歇湍流特性,分别从壁面平均速度梯度、平均速度剖面以及Reynolds应力等方面进行了分析.发现平均速度剖面在一个周期的大部分相位下并不符合对数律,只有减速阶段的极少数相位处与对数律符合得较好;将Reynolds应力与不可压缩边界层的结果进行了对比,发现两者从分布上很相似,包括峰值大小及位置,但二者在湍流核心区存在较大的差异.以上特性显示出Stokes层过渡阶段间歇湍流的强非平衡性.
  • [1] HINO M, SAWAMOTO M, TAKASU S. Experiments on transition to turbulence in an oscillatory pipe flow[J]. Journal of Fluid Mechanics,1976,75(2): 193-207.
    [2] HINO M, KASGUWAYANAGI M, NAKAYAMA A, et al. Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow[J]. Journal of Fluid Mechanics,1983,131(1): 363-400.
    [3] JENSEN B L, SUMER B M, FREDSOE J. Turbulent oscillatory boundary layers at high Reynolds numbers[J]. Journal of Fluid Mechanics,1989,206(1): 265-297.
    [4] AKHAVAN R, KAMM R D, SHAPIRO A H. An investigation of transition to turbulence in bounded oscillatory Stokes flows, part 1: experiments[J]. Journal of Fluid Mechanics,1989,225: 395-422.
    [5] HSU C T, LU X, KWAN M K. LES and RANS studies of oscillating flows over flat plate[J]. Journal of Engineering Mechanics,2000,188: 186-193.
    [6] SCOTTI A, PIOMELLI U. Numerical simulation of pulsating turbulent channel flow[J]. Physics of Fluids,2001,13(5): 1367-1384.
    [7] LOHMANN I P, FREDSΦE J, SUMER B M, et al. Large eddy simulation of the ventilated wave boundary layer[J]. Journal of Geophysical Research,2006,111: 21-39.
    [8] SALON S, ARMENIO V, CRISE A. A numerical investigation of the Stokes boundary layer in the turbulent regime[J]. Journal of Fluid Mechanics,2007,570: 253-296.
    [9] ZHANG Q. Large eddy simulation of oscillatory boundary layer at Reδ =3 500[J]. Journal of Hydrodynamics,2010,22(5): 160-165.
    [10] SHENG Y P. Hydraulic applications of a second-order closure model of turbulent transport[C]// Applying Research to Hydraulic Practice, ASCE . 2010.
    [11] JUSTESEN P. A note on turbulence calculations in the wave boundary layer[J]. Journal of Hydraulic Research,1991,29(5): 699-711.
    [12] SAJJADI S G, WAYWELL M N. Application of roughness-dependent boundary conditions to turbulent oscillatory flows[J]. International Journal of Heat and Fluid Flow,1997,18(4): 368-375.
    [13] THAIS L, CHAPALAIN G, SMAOUI H. Reynolds number variation in oscillatory boundary layers, part Ⅰ: purely oscillatory motion[J]. Coastal Engineering,1999,36(2): 111-146.
    [14] FOTI E, SCANDURA P A. A low Reynolds number k-ε model validated for oscillatory flows over smooth and rough wall[J]. Coastal Engineering,2004,51(2): 173-184.
    [15] SANA A, GHUMMAN R A, TANAKA H. Modeling of a rough-wall oscillatory boundary layer using two-equation turbulence models[J]. Journal of Hydraulic Engineering, 2009,135(1): 60-65.
    [16] SHOME B. Numerical study of oscillating boundary layer flow over a flat plate using k-kL-ω turbulence model[J]. International Journal of Heat and Fluid Flow,2013,42: 131-138.
    [17] VITTORI G, VERZICCO R. Direct simulation of transition in an oscillatory boundary layer[J]. Journal of Fluid Mechanics,1998,371: 207-232.
    [18] 孔玮, 罗纪生. 壁面的表面粗糙度引起的Stokes层亚临界不稳定性[J]. 航空动力学报, 2016,31(10): 2500-2506.(KONG Wei, LUO Jisheng. Subcritical instability of a finite Stokes layer induced by wall surface roughness[J]. Journal of Aerospace Power,2016,〖STHZ〗 31(10): 2500-2506.(in Chinese))
    [19] KONG W, LUO J S. Influence of three-dimensional wall roughness on the transition of a finite Stokes layer[J]. European Journal of Mechanics B: Fluids,2017,62: 12-20.
    [20] 唐洪涛. 不可压缩平板边界层从层流突变为湍流的机理及湍流特性[D]. 博士学位论文. 天津: 天津大学, 2007.(TANG Hongtao. The mechanism of breakdown in laminar-turbulent transition and the characteristics of turbulence in an incompressible boundary layer on a flat plate[D]. PhD Thesis. Tianjin: Tianjin University, 2007.(in Chinese))
  • 加载中
计量
  • 文章访问数:  3707
  • HTML全文浏览量:  288
  • PDF下载量:  284
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-27
  • 修回日期:  2020-09-08
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回