留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的Roe格式及其稳定性分析

胡立军 赵昆磊

胡立军, 赵昆磊. 一种改进的Roe格式及其稳定性分析[J]. 应用数学和力学, 2020, 41(10): 1110-1124. doi: 10.21656/1000-0887.400388
引用本文: 胡立军, 赵昆磊. 一种改进的Roe格式及其稳定性分析[J]. 应用数学和力学, 2020, 41(10): 1110-1124. doi: 10.21656/1000-0887.400388
HU Lijun, ZHAO Kunlei. A Modified Roe Scheme and Stability Analysis[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1110-1124. doi: 10.21656/1000-0887.400388
Citation: HU Lijun, ZHAO Kunlei. A Modified Roe Scheme and Stability Analysis[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1110-1124. doi: 10.21656/1000-0887.400388

一种改进的Roe格式及其稳定性分析

doi: 10.21656/1000-0887.400388
详细信息
    作者简介:

    胡立军(1985—),男,博士(通讯作者. E-mail: hulijun@lsec.cc.ac.cn).

  • 中图分类号: O354|O241.82

A Modified Roe Scheme and Stability Analysis

  • 摘要: 低耗散的激波捕捉方法,包括流行的Roe格式,在计算多维强激波问题时会遭遇激波不稳定现象的困扰,这会严重影响格式对于高超声速流动问题的精确模拟.对Roe格式进行小扰动分析,结果表明:激波面纵向所有物理量的扰动均会衰减,而横向的密度扰动和剪切速度扰动不会衰减.在横向数值通量上增加与熵波和剪切波相对应的黏性来抑制Roe格式不稳定现象的发生.为了防止不合适的黏性影响格式对于接触间断和剪切层的分辨率,定义两个开关函数,使得黏性仅仅添加在激波层亚声速区的横向数值通量上.数值测试的结果表明:改进的Roe格式不仅保留了原始Roe格式高分辨率的优点,而且具有更好的鲁棒性,消除了激波不稳定现象.
  • [1] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(2): 357-372.
    [2] TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL Riemann solver[J]. Shock Waves,1994,4(1): 25-34.
    [3] QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids,1994,18(6): 555-574.
    [4] GRESSIER J, MOSCHETTA J M. Robustness versus accuracy in shock-wave computations[J]. International Journal for Numerical Methods in Fluids,2000,33(3): 313-332.
    [5] SHEN Z J, YAN W, YUAN G W. A robust HLLC-type Riemann solver for strong shock[J]. Journal of Computational Physics,2016,309: 185-206.
    [6] XIE W J, LI H, TIAN Z Y, et al. A low diffusion flux splitting method for inviscid compressible flows[J]. Computers & Fluids,2015,112(2): 83-93.
    [7] LIOU M S. Mass flux scheme and connection to shock instability[J]. Journal of Computational Physics,2000,160(2): 623-648.
    [8] LIOU M S. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
    [9] XU K, LI Z W. Dissipative mechanism in Godunov-type schemes[J]. International Journal of Numerical Methods in Fluids,2001,37(1): 1-22.
    [10] DUMBSER M, MOSCHETTA J M, GRESSIER J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics,2004,197(2): 647-670.
    [11] CHEN S S, YAN C, LIN B X, et al. Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon[J]. Journal of Computational Physics,2018,373: 662-672.
    [12] XIE W J, LI W, LI H, et al. On numerical instabilities of Godunov-type schemes for strong shocks[J]. Journal of Computational Physics,2017,350: 607-637.
    [13] SIMON S, MANDAL J C. A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control[J]. Computers & Fluids,2018,174: 144-166.
    [14] WU H, SHEN L J, SHEN Z J. A hybrid numerical method to cure numerical shock instability[J]. Communications in Computational Physics,2010,8: 1264-1271.
    [15] REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computers & Fluids,2003,32(10): 1379-403.
    [16] NISHIKAWA H, KITAMURA K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics,2008,227(4): 2560-2581.
    [17] PEERY K M, IMLAY S T. Blunt-body flow simulations[C]//24th Joint Propulsion Conference . Boston, MA, 1988.
    [18] FLEISCHMANN N, ADAMI S, HU X Y, et al. A low dissipation method to cure the grid-aligned shock instability[J]. Journal of Computational Physics,2020,401: 109004.
    [19] KIM S, KIM C, RHO O H, et al. Cures for the shock instability: development of a shock-stable Roe scheme[J]. Journal of Computational Physics,2003,185(2): 342-374.
    [20] RODIONOV A. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon[J]. Journal of Computational Physics,2017,345: 308-329.
    [21] RODIONOV A. Artificial viscosity to cure the shock instability in high-order Godunov-type schemes[J]. 〖JP〗 Computers & Fluids,2019,190: 77-97.
    [22] RODIONOV A. Artificial viscosity to cure the carbuncle phenomenon: the three-dimensional case[J]. Journal of Computational Physics,2018,361: 50-55.
    [23] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computational Physics,1984,54(1): 115-173.
    [24] HUANG K B, WU H, YU H, et al. Cures for numerical shock instability in HLLC solver[J]. International Journal of Numerical Methods in Fluids,2011,65(9): 1026-1038.
  • 加载中
计量
  • 文章访问数:  4562
  • HTML全文浏览量:  366
  • PDF下载量:  347
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-30
  • 修回日期:  2020-02-08
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回