留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有水平流动的对流斑图成长和动力学特性

宁利中 宁碧波 胡彪 田伟利

宁利中, 宁碧波, 胡彪, 田伟利. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104
引用本文: 宁利中, 宁碧波, 胡彪, 田伟利. 具有水平流动的对流斑图成长和动力学特性[J]. 应用数学和力学, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104
NING Lizhong, NING Bibo, HU Biao, TIAN Weili. Growth and Dynamics of Convection Patterns With Horizontal Flow[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104
Citation: NING Lizhong, NING Bibo, HU Biao, TIAN Weili. Growth and Dynamics of Convection Patterns With Horizontal Flow[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1146-1156. doi: 10.21656/1000-0887.410104

具有水平流动的对流斑图成长和动力学特性

doi: 10.21656/1000-0887.410104
基金项目: 国家自然科学基金(10872164)
详细信息
    作者简介:

    宁利中(1961—),男,教授,博士(通讯作者. E-mail: ninglz@xaut.edu.cn).

  • 中图分类号: O357

Growth and Dynamics of Convection Patterns With Horizontal Flow

Funds: The National Natural Science Foundation of China(10872164)
  • 摘要: 采用二维流体力学基本方程组对Prandtl数Pr=0.72具有水平流动的对流斑图成长和动力学特性进行了数值模拟.结果说明,对于给定的相对Rayleigh数Rar=5(Rayleigh数Ra=8 540)和Reynolds数Re=22.5,行波对流斑图的成长分为三个阶段,即对流发展阶段、指数成长阶段、周期变化阶段(过渡调整区、稳定周期变化区).行波对流的平均波数随着时间的发展或者对流斑图的成长而减小.随着相对Rayleigh数的增加,行波对流的指数成长阶段的时间变短,对流最大垂直流速的成长率变大.对于水平流动Re=5时,对流最大垂直流速的成长率γm与Rar的关系为γm=0.004 8Ra6.065 3r.在周期变化阶段,经过行波对流斑图和对流参数的过渡调整区后,对流进入斑图和对流参数的稳定周期变化区.对于给定的Rar=5时,行波对流的无量纲周期Tt随着Re变化的关系式为Tt=0.001 4Re2.363 5.
  • [1] CROSS M C, HOHENBERG P C. Pattern formation outside of equilibrium[J]. Reviews of Modern Physics,1993,65(3): 851-1112.
    [2] BODENSCHATZ E, PESCH W, AHLERS G. Recent developments in Rayleigh-Bénard convection[J]. Annual Review of Fluid Mechanics,2000,32(1): 709-778.
    [3] NING L Z, HARADA Y, YAHATA H. Formation process of the traveling wave state with a defect in binary fluid convection[J]. Progress of Theoretical Physics,1997,98(3): 551-566.
    [4] ZHAO B X, TIAN Z F. Numerical investigation of binary fluid convection with a weak negative separation ratio in finite containers[J].Physics of Fluids,2015,27(7): 074102.
    [5] MERCADER I, BATISTE O, ALONSO A, et al. Traveling convectons in binary fluid convection[J]. Journal of Fluid Mechanics,2013,722: 240-265.
    [6] WATANABE T, IIMA M, NISHIURA Y. Spontaneous formation of travelling localized structures and their asymptotic behaviour in binary fluid convection[J]. Journal of Fluid Mechanics,2012,712: 219-243.
    [7] MERCADER I, BATISTE O, ALONSO A, et al. Convectons, anticonvectons and multiconvectons in binary fluid convection[J]. Journal of Fluid Mechanics,2011,667: 586-606.
    [8] 宁利中, 王永起, 袁喆, 等. 两种不同结构的混合流体局部行波对流斑图[J]. 科学通报, 2016,61(8): 872-880.(NING Lizhong, WANG Yongqi, YUAN Zhe, et al. Two types of patterns of localized traveling wave convection in binary fluid mixtures with different structures[J]. Chinese Science Bulletin,2016,61(8): 872-880.(in Chinese))
    [9] 宁利中, 余荔, 袁喆, 等. 沿混合流体对流分叉曲线上部分支行波斑图的演化[J]. 中国科学: 物理 力学 天文学, 2009,39(5): 746-751.(NING Lizhong, YU Li, YUAN Zhe, et al. Evolution of traveling wave patterns along upper branch of bifurcation diagram in binary fluid convection[J]. Scientia Sinica: Physica, Mechanica & Astronomica,2009,39(5): 746-751.(in Chinese))
    [10] 宁利中, 王娜, 袁喆, 等. 分离比对混合流体Rayleigh-Bénard对流解的影响[J]. 物理学报, 2014,63(10): 104401.(NING Lizhong, WANG Na, YUAN Zhe, et al. Influence of separation ratio on Rayleigh-Bénard convection solutions in a binary fluid mixture[J]. Acta Physica Sinica,2014,63(10): 104401.(in Chinese))
    [11] 余荔, 宁利中, 魏炳乾, 等. Rayleigh-Benard 对流及其在工程中的应用[J]. 水资源与水工程学报, 2008,19(3): 52-54.(YU Li, NING Lizhong, WEI Binqian, et al. Rayleigh-Benard convection and application in engineering[J]. Journal of Water Resources and Water Engineering,2008,19(3): 52-54.(in Chinese))
    [12] JUNG D, LUCKE M, BUCHEL P. Influence of through-flow on linear pattern formation properties in binary mixture convection[J]. Physical Review E,1996,54(2): 1510-1529.
    [13] BUCHEL P, LUCKE M. Influence of through flow on binary fluid convection[J]. Physical Review E,2000,61(4): 3793-3810.
    [14] ROTH D, BUCHEL P, LUCKE M, et al. Influence of boundaries on pattern selection in through-flow[J]. Physica D: Nonlinear Phenomena,1996,97(1/3): 253-263.
    [15] JUNG D, LUCKE M, SZPRYNGER A. Influence of inlet and bulk noise on Rayleigh-Benard convection with lateral flow[J]. Physical Review E,2001,63(5): 056301.
    [16] 宁利中, 胡彪, 宁碧波, 等. Poiseuille-Rayleigh-Benard流动中对流斑图的分区和成长[J]. 物理学报, 2016,65(21): 214401.(NING Lizhong, HU Biao, NING Bibo, et al. Partition and growth of convection patterns in Poiseuille-Rayleigh-Bénard flow[J]. Acta Physica Sinica,2016,65(21): 214401.(in Chinese))
    [17] 胡彪, 宁利中, 宁碧波, 等. 局部行波对水平来流的依赖性[J]. 水动力学研究与进展, 2017,32(1): 110-116.(HU Biao, NING Lizhong, NING Bibo, et al. The dependence of localized traveling wave on horizontal flow[J]. Chinese Journal of Hydrodynamics,2017,32(1): 110-116.(in Chinese))
    [18] 宁利中, 周洋, 王思怡, 等. Poiseuille-Rayleigh-Benard流动中的局部行波对流[J]. 水动力学研究与进展, 2010,25(3): 299-306.(NING Lizhong, ZHOU Yang, WANG Siyi, et al. Localized traveling wave convection in Poiseuille-Rayleigh-Benard flows[J]. Chinese Journal of Hydrodynamics,2010,25(3): 299-306.(in Chinese))
    [19] 胡彪, 宁利中, 宁碧波, 等. 周期性加热Poiseuille-Rayleigh-Benard流动中局部行波的研究[J]. 水动力学研究与进展, 2017,32(3): 336-343.(HU Biao, NING Lizhong, NING Bibo, et al. Localized traveling waves in Poiseuille-Rayleigh-Benard flows under periodic heating[J]. Chinese Journal of Hydrodynamics,2017,32(3): 336-343.(in Chinese))
    [20] 赵秉新, 田振夫. 底部加热平面Poiseuille流中的局部行波结构[J]. 水动力学研究与进展, 2012,27(6): 649-658.(ZHAO Bingxin, TIAN Zhenfu. Localized traveling wave convection in plan Poiseuille flow heated from below[J]. Chinese Journal of Hydrodynamics,2012,27(6): 649-658.(in Chinese))
    [21] 赵秉新. 水平流作用下的混合流体行波对流[J]. 水动力学研究与进展, 2012,27(3): 264-274.(ZHAO Bingxin. Traveling wave convection in binary fluid mixtures with lateral flow[J]. Chinese Journal of Hydrodynamics,2012,27(3): 264-274.(in Chinese))
    [22] NING L Z, QI X, HARADA Y, et al. A periodically localized traveling wave state of binary fluid convection with horizontal flows[J]. Journal of Hydrodynamics,2006,18(2): 199-205.
    [23] 李国栋, 黄永念. 水平流作用下行波对流的成长及周期性重复[J]. 物理学报, 2004,53(11): 3800-3805.(LI Goudong, HUANG Yongnian. Growth and periodic repeating of traveling-wave convection with through-flow[J]. Acta Physica Sinica,2004,53(11): 3800-3805.(in Chinese))
    [24] NING L Z, HARADA Y, YAHATA H, et al. The spatio-temporal structure of binary fluid convection with horizontal flow[J]. Journal of Hydrodynamics,2004,16(2): 151-157.
    [25] NING L Z, HARADA Y, YAHATA H, et al. Fully-developed traveling wave convection in binary fluid mixtures with lateral flow[J]. Progress of Theoretical Physics,2001,106(3): 503-512.
    [26] 宁利中, 吴昊, 宁碧波, 等. 倾斜层中的对流斑图及其临界条件[J]. 应用数学和力学, 2019,40(4): 398-407.(NING Lizhong, WU Hao, NING Bibo, et al. Convection patterns and corresponding critical condition in an inclined layer[J]. Applied Mathematics and Mechanics,2019,40(4): 398-407.(in Chinese))
    [27] 宁利中, 张珂, 宁碧波, 等. 侧向加热腔体中的多圈型对流斑图[J]. 应用数学和力学, 2020,41(3): 250-259.(NING Lizhong, ZHANG Ke, NING Bibo, et al. Multi-roll type convection pattern in cavity heated laterally[J]. Applied Mathematics and Mechanics,2020,41(3): 250-259.(in Chinese))
  • 加载中
计量
  • 文章访问数:  3299
  • HTML全文浏览量:  92
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-05-25
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回