## 留言板

 引用本文: 李亚, 易志坚, 王敏, 苏康. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 1083-1091.
LI Ya, YI Zhijian, WANG Min, SU Kang. The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130
 Citation: LI Ya, YI Zhijian, WANG Min, SU Kang. The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091.

## 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子

##### doi: 10.21656/1000-0887.410130

###### 作者简介:李亚（1990—），男，博士生(通讯作者. E-mail: 55466539@qq.com).
• 中图分类号: O346.1

## The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip

Funds: The National Science Fund for Young Scholars of China（51408091）
• 摘要: 采用应力强度因子的裂纹线求解方法，对裂纹面局部均布荷载作用下的Ⅰ型裂纹有限宽板应力强度因子进行了解析求解.其思路是：直接利用无限宽板裂纹问题应力场的解析解，求得应力分量在裂纹线上的形式，通过合理的修正，提出修正后的应力场在裂纹线应满足的条件；进而求解应力强度因子，得出了有限宽板对相应无限宽板的应力强度因子修正系数.当板宽趋于无限大时，得到的应力强度因子与相应的无限宽裂纹板的解答一致.
•  [1] IRWIN G R. Analysis of stresses and strains near the end of crack traversing a plane[J]. Journal of Applied Mechanics-Transactions of the ASME,1957,24: 361-364. [2] WESTERGAARD H M. Bearing pressure and cracks[J]. The Journal of Applied Mechanics,1939,A61: 49-53. [3] MUSKHELISHIVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Beijing: Science Press, 1958: 374-377. [4] PARIS P C, SIH G C. Stress Analysis of Cracks, Fracture Toughness Testing and Its Applications [M]. Philadelphia: ASTM, 1965: 30-70. [5] SIH G C, LIEBOWITZ H. Mathematical Fundamentals, in Fracture: an Advanced Treatise [M]. New York: Academic Press, 1968: 68-190. [6] RICE J R. Mathematical Analysis in the Mathematics of Fracture, in Fracture: an Advanced Treatise [M]. New York: Academic Press, 1968: 191-371. [7] ACHENBACH J D, LI Z L. Plane stress crack line fields for crack growth in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1984,20(3): 534-544. [8] GUO Q X, LI K R. Plastic deformation ahead of a plane stress tensile crack growth in an elastic-perfectly plastic solid[J]. Engineering Fracture Mechanics,1987,28(2): 139-146. [9] YI Z J. The near crack line solution for plane stress tensile crack growth in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1992,42(1): 169-176. [10] YI Z J. The more precise crack line analyses for antiplane quasistatically propagating crack[J]. International Journal of Fracture,1992,55(1): 9-12. [11] YI Z J. The new and analytical solutions for mode Ⅲ cracks in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1992,42(5): 833-840. [12] YI Z J. The most recent solutions of near crack line fields for mode Ⅲ cracks[J]. Engineering Fracture Mechanics,1994,47(1): 147-155. [13] YI Z J, WANG S J, WU H L. Precise elastic-plastic analysis of crack line field for mode Ⅱ plane strain crack[J]. International Journal of Fracture,1996,80(4): 353-363. [14] YI Z J, WANG S J, WANG X J. Precise solutions of elastic-plastic crack line fields for cracked plate loaded by antiplane point forces[J]. Engineering Fracture Mechanics,1997,57(1): 75-83. [15] 易志坚. Ⅰ型平面应力有限宽裂纹板弹塑性分析[J]. 西南交通大学学报, 1998,33(1): 82-87.(YI Zhijian. Elastic-plastic analysis of mode Ⅰ cracked plate with finite dimensions under plane stress conditions[J]. Journal of Southwest Jiaotong Uniersity,1998,33(1): 82-87.(in Chinese)) [16] 易志坚, 严波. Ⅰ型平面应力裂纹弹塑性场在裂纹线附近匹配方程的一般形式[J]. 应用数学和力学, 2001,22(10): 1058-1066.(YI Zhijian, YAN Bo. General form of matching equation of elastic-plastic field near crack line for mode Ⅰ crack under plane stress condition[J]. Applied Mathematics and Mechanics,2001,22(10): 1058-1066.(in Chinese)) [17] ZHOU X P, WANG J H, HUANG Y B. Near crack line elastic-plastic analysis for an infinite plate loaded by a pair of point shear forces[J]. Journal of Shanghai Jiaotong University(Science),2003,E8(2): 115-117. [18] WANG J H, ZHOU X P. Near crack line elastic-plastic analysis for a infinite plate loaded by two pairs of point tensile forces[J]. Mechanics Research Communications,2004,31(4): 415-420. [19] 王成, 吴承平. 偏心裂纹板在裂纹面受两对反平面点力的弹塑性解析解[J]. 应用数学和力学, 2003,24(7): 691-698.(WANG Cheng, WU Chengping. Elastic-plastic analytical solutions for an eccentric crack loaded by two pairs of anti-plane point forces[J]. Applied Mathematics and Mechanics,2003,24(7): 691-698.(in Chinese)) [20] 易志坚, 赵朝华, 杨庆国, 等. Ⅲ型裂纹弹塑性场在裂纹线附近匹配方程的一般形式[J]. 应用数学和力学, 2009,30(5): 515-524.(YI Zhijian, ZHAO Chaohua, YANG Qingguo, et al. General forms of elastic-plastic matching equations for mode-Ⅲ cracks near the crack line[J]. Applied Mathematics and Mechanics,2009,30(5): 515-524.(in Chinese)) [21] YI Z J. Revisiting the Hult-Mcclintock closed-form solution for mode Ⅲ cracks[J]. Journal of Mechanics of Materials and Structures,2010,5(6): 1023-1035. [22] GUO J H, LU Z X, FENG X. The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials[J]. Acta Mechanica,2010,215(1): 119-134. [23] GUO J H, LU Z X. Line field analysis and complex variable method for solving elastic-plastic fields around an anti-plane elliptic hole[J]. Science China: Physics, Mechanics and Astronomy,2011,54(8): 1495-1501. [24] DENG J L, YANG P, DONG Q, et al. Elasto-plastic fracture analysis of finite-width cracked stiffened plate[J]. Applied Mechanics & Materials,2014,496/500: 1052-1057. [25] LI Y, HUANG F, WANG M, et al. Near crack line elastic-plastic field for mode Ⅰ cracks under plane stress condition in rectangular coordinates[J]. Advances in Materials Science and Engineering,2020(3): 1-10. [26] 易志坚, 谷建义, 何小兵, 等. 反平面裂纹在裂纹自由表面附近的弹塑性分析[J]. 应用数学和力学, 2010,31(7): 853-859.(YI Zhijian, GU Jianyi, HE Xiaobing, et al. Elastic-plastic analysis of an antiplane crack near the crack surface region[J]. Applied Mathematics and Mechanics,2010,31(7): 853-859.(in Chinese)) [27] HUANG F, YI Z J, GU J Y, et al. Elastic-plastic analysis near the crack surface region on a mode Ⅲ crack under a pair of point forces[J]. AIP Advances,2016,6(6): 065113. [28] HUANG F, YI Z J, YANG Q G, et al. Elastic-plastic analysis of the crack surface vicinity under a pair of anti-plane forces applied at an arbitrary point on the crack surface[J]. AIP Advances,2018,8(10): 105033. [29] 易志坚. 求解应力强度因子的一种新方法[J]. 重庆交通大学学报, 1991,10(3): 37-41.(YI Zhijian. A new method of determining the stress intensity factors[J]. Journal of Chongqing Jiaotong University,1991,10(3): 37-41.(in Chinese)) [30] WANG Q Z. The crack-line stress field method for analysing SIFS of strips-illustrated with an eccentrically cracked tension strip[J].International Journal of Fracture,1993,59(2): R39-R43. [31] GDOUTOS E E. Fracture Mechanics: an Introduction [M]. Netherlands: Springer, 2005. [32] ANDERSON T L. Fracture Mechanics: Fundamentals and Applications [M]. CRC Press, 2015.

##### 计量
• 文章访问数:  1183
• HTML全文浏览量:  264
• PDF下载量:  359
• 被引次数: 0
##### 出版历程
• 收稿日期:  2020-05-10
• 修回日期:  2020-07-26
• 刊出日期:  2020-10-01

/

• 分享
• 用微信扫码二维码

分享至好友和朋友圈