留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子

李亚 易志坚 王敏 苏康

李亚, 易志坚, 王敏, 苏康. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130
引用本文: 李亚, 易志坚, 王敏, 苏康. 裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子[J]. 应用数学和力学, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130
LI Ya, YI Zhijian, WANG Min, SU Kang. The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130
Citation: LI Ya, YI Zhijian, WANG Min, SU Kang. The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1083-1091. doi: 10.21656/1000-0887.410130

裂纹面局部均布荷载下Ⅰ型裂纹有限宽板应力强度因子

doi: 10.21656/1000-0887.410130
基金项目: 国家自然科学基金青年科学基金(51408091)
详细信息
    作者简介:

    李亚(1990—),男,博士生(通讯作者. E-mail: 55466539@qq.com).

  • 中图分类号: O346.1

The Stress Intensity Factor of a FiniteWidth Plate With a Mode-Ⅰ Center Crack Subjected to Uniform Stress on the Crack Surface Near the Crack Tip

Funds: The National Science Fund for Young Scholars of China(51408091)
  • 摘要: 采用应力强度因子的裂纹线求解方法,对裂纹面局部均布荷载作用下的Ⅰ型裂纹有限宽板应力强度因子进行了解析求解.其思路是:直接利用无限宽板裂纹问题应力场的解析解,求得应力分量在裂纹线上的形式,通过合理的修正,提出修正后的应力场在裂纹线应满足的条件;进而求解应力强度因子,得出了有限宽板对相应无限宽板的应力强度因子修正系数.当板宽趋于无限大时,得到的应力强度因子与相应的无限宽裂纹板的解答一致.
  • [1] IRWIN G R. Analysis of stresses and strains near the end of crack traversing a plane[J]. Journal of Applied Mechanics-Transactions of the ASME,1957,24: 361-364.
    [2] WESTERGAARD H M. Bearing pressure and cracks[J]. The Journal of Applied Mechanics,1939,A61: 49-53.
    [3] MUSKHELISHIVILI N I. Some Basic Problems of the Mathematical Theory of Elasticity [M]. Beijing: Science Press, 1958: 374-377.
    [4] PARIS P C, SIH G C. Stress Analysis of Cracks, Fracture Toughness Testing and Its Applications [M]. Philadelphia: ASTM, 1965: 30-70.
    [5] SIH G C, LIEBOWITZ H. Mathematical Fundamentals, in Fracture: an Advanced Treatise [M]. New York: Academic Press, 1968: 68-190.
    [6] RICE J R. Mathematical Analysis in the Mathematics of Fracture, in Fracture: an Advanced Treatise [M]. New York: Academic Press, 1968: 191-371.
    [7] ACHENBACH J D, LI Z L. Plane stress crack line fields for crack growth in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1984,20(3): 534-544.
    [8] GUO Q X, LI K R. Plastic deformation ahead of a plane stress tensile crack growth in an elastic-perfectly plastic solid[J]. Engineering Fracture Mechanics,1987,28(2): 139-146.
    [9] YI Z J. The near crack line solution for plane stress tensile crack growth in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1992,42(1): 169-176.
    [10] YI Z J. The more precise crack line analyses for antiplane quasistatically propagating crack[J]. International Journal of Fracture,1992,55(1): 9-12.
    [11] YI Z J. The new and analytical solutions for mode Ⅲ cracks in an elastic-perfectly plastic material[J]. Engineering Fracture Mechanics,1992,42(5): 833-840.
    [12] YI Z J. The most recent solutions of near crack line fields for mode Ⅲ cracks[J]. Engineering Fracture Mechanics,1994,47(1): 147-155.
    [13] YI Z J, WANG S J, WU H L. Precise elastic-plastic analysis of crack line field for mode Ⅱ plane strain crack[J]. International Journal of Fracture,1996,80(4): 353-363.
    [14] YI Z J, WANG S J, WANG X J. Precise solutions of elastic-plastic crack line fields for cracked plate loaded by antiplane point forces[J]. Engineering Fracture Mechanics,1997,57(1): 75-83.
    [15] 易志坚. Ⅰ型平面应力有限宽裂纹板弹塑性分析[J]. 西南交通大学学报, 1998,33(1): 82-87.(YI Zhijian. Elastic-plastic analysis of mode Ⅰ cracked plate with finite dimensions under plane stress conditions[J]. Journal of Southwest Jiaotong Uniersity,1998,33(1): 82-87.(in Chinese))
    [16] 易志坚, 严波. Ⅰ型平面应力裂纹弹塑性场在裂纹线附近匹配方程的一般形式[J]. 应用数学和力学, 2001,22(10): 1058-1066.(YI Zhijian, YAN Bo. General form of matching equation of elastic-plastic field near crack line for mode Ⅰ crack under plane stress condition[J]. Applied Mathematics and Mechanics,2001,22(10): 1058-1066.(in Chinese))
    [17] ZHOU X P, WANG J H, HUANG Y B. Near crack line elastic-plastic analysis for an infinite plate loaded by a pair of point shear forces[J]. Journal of Shanghai Jiaotong University(Science),2003,E8(2): 115-117.
    [18] WANG J H, ZHOU X P. Near crack line elastic-plastic analysis for a infinite plate loaded by two pairs of point tensile forces[J]. Mechanics Research Communications,2004,31(4): 415-420.
    [19] 王成, 吴承平. 偏心裂纹板在裂纹面受两对反平面点力的弹塑性解析解[J]. 应用数学和力学, 2003,24(7): 691-698.(WANG Cheng, WU Chengping. Elastic-plastic analytical solutions for an eccentric crack loaded by two pairs of anti-plane point forces[J]. Applied Mathematics and Mechanics,2003,24(7): 691-698.(in Chinese))
    [20] 易志坚, 赵朝华, 杨庆国, 等. Ⅲ型裂纹弹塑性场在裂纹线附近匹配方程的一般形式[J]. 应用数学和力学, 2009,30(5): 515-524.(YI Zhijian, ZHAO Chaohua, YANG Qingguo, et al. General forms of elastic-plastic matching equations for mode-Ⅲ cracks near the crack line[J]. Applied Mathematics and Mechanics,2009,30(5): 515-524.(in Chinese))
    [21] YI Z J. Revisiting the Hult-Mcclintock closed-form solution for mode Ⅲ cracks[J]. Journal of Mechanics of Materials and Structures,2010,5(6): 1023-1035.
    [22] GUO J H, LU Z X, FENG X. The fracture behavior of multiple cracks emanating from a circular hole in piezoelectric materials[J]. Acta Mechanica,2010,215(1): 119-134.
    [23] GUO J H, LU Z X. Line field analysis and complex variable method for solving elastic-plastic fields around an anti-plane elliptic hole[J]. Science China: Physics, Mechanics and Astronomy,2011,54(8): 1495-1501.
    [24] DENG J L, YANG P, DONG Q, et al. Elasto-plastic fracture analysis of finite-width cracked stiffened plate[J]. Applied Mechanics & Materials,2014,496/500: 1052-1057.
    [25] LI Y, HUANG F, WANG M, et al. Near crack line elastic-plastic field for mode Ⅰ cracks under plane stress condition in rectangular coordinates[J]. Advances in Materials Science and Engineering,2020(3): 1-10.
    [26] 易志坚, 谷建义, 何小兵, 等. 反平面裂纹在裂纹自由表面附近的弹塑性分析[J]. 应用数学和力学, 2010,31(7): 853-859.(YI Zhijian, GU Jianyi, HE Xiaobing, et al. Elastic-plastic analysis of an antiplane crack near the crack surface region[J]. Applied Mathematics and Mechanics,2010,31(7): 853-859.(in Chinese))
    [27] HUANG F, YI Z J, GU J Y, et al. Elastic-plastic analysis near the crack surface region on a mode Ⅲ crack under a pair of point forces[J]. AIP Advances,2016,6(6): 065113.
    [28] HUANG F, YI Z J, YANG Q G, et al. Elastic-plastic analysis of the crack surface vicinity under a pair of anti-plane forces applied at an arbitrary point on the crack surface[J]. AIP Advances,2018,8(10): 105033.
    [29] 易志坚. 求解应力强度因子的一种新方法[J]. 重庆交通大学学报, 1991,10(3): 37-41.(YI Zhijian. A new method of determining the stress intensity factors[J]. Journal of Chongqing Jiaotong University,1991,10(3): 37-41.(in Chinese))
    [30] WANG Q Z. The crack-line stress field method for analysing SIFS of strips-illustrated with an eccentrically cracked tension strip[J].International Journal of Fracture,1993,59(2): R39-R43.
    [31] GDOUTOS E E. Fracture Mechanics: an Introduction [M]. Netherlands: Springer, 2005.
    [32] ANDERSON T L. Fracture Mechanics: Fundamentals and Applications [M]. CRC Press, 2015.
  • 加载中
计量
  • 文章访问数:  518
  • HTML全文浏览量:  91
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-10
  • 修回日期:  2020-07-26
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回