留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重力载荷作用下柔性梁的结构变形与承载力分析

王单 王健

王单, 王健. 重力载荷作用下柔性梁的结构变形与承载力分析[J]. 应用数学和力学, 2021, 42(6): 611-622. doi: 10.21656/1000-0887.410169
引用本文: 王单, 王健. 重力载荷作用下柔性梁的结构变形与承载力分析[J]. 应用数学和力学, 2021, 42(6): 611-622. doi: 10.21656/1000-0887.410169
WANG Dan, WANG Jian. Analysis of Deformation and Bearing Capacity of Flexible Beams Under Gravitational Loads[J]. Applied Mathematics and Mechanics, 2021, 42(6): 611-622. doi: 10.21656/1000-0887.410169
Citation: WANG Dan, WANG Jian. Analysis of Deformation and Bearing Capacity of Flexible Beams Under Gravitational Loads[J]. Applied Mathematics and Mechanics, 2021, 42(6): 611-622. doi: 10.21656/1000-0887.410169

重力载荷作用下柔性梁的结构变形与承载力分析

doi: 10.21656/1000-0887.410169
基金项目: 

国家自然科学基金(11902151);江苏省自然科学基金(BK20180411;BK20190684)

详细信息
    作者简介:

    王单(1991—),女,特聘副研究员,博士(通讯作者. E-mail: wangd12@nuaa.edu.cn).

    通讯作者:

    王单(1991—),女,特聘副研究员,博士(通讯作者. E-mail: wangd12@nuaa.edu.cn).

  • 中图分类号: O39

Analysis of Deformation and Bearing Capacity of Flexible Beams Under Gravitational Loads

Funds: 

The National Natural Science Foundation of China(11902151)

  • 摘要: 柔性体在承受外载荷作用时,会通过自身变形,降低所承受的外载荷.为了研究重力载荷作用下柔性梁的结构变形与承载力之间的定量关系,首先建立模拟实验分析重力载荷在梁上的分布形式;基于Timoshenko梁的大变形本构方程,建立承受重力载荷作用下大变形梁的控制方程;通过量纲分析,确定研究两个无量纲变量,结构变形数与Cauchy数;数值求解控制方程,分析结构变形数与Cauchy数之间的定量关系;与实验结果对比,证实理论模型的可靠性,并结合文献中树枝承受雪载荷的实验数据,分析模型用于预测实际问题的可行性.所建理论模型可用于机械工程中柔性结构件的变形分析与承载力设计,也可用来预测自然界中风沙、大雪环境下植被的抗倒伏能力.
  • MARJORIBANKS T I, LAGUE D, HARDY R J, et al. Flexural rigidity and shoot reconfiguration determine wake length behind saltmarsh vegetation patches[J]. Journal of Geophysical Research: Earth Surface,2019,124(8): 2176-2196.
    [2]BHATI A, SAWANNI R, KULKARNI K, et al. Role of skin friction drag during flow-induced reconfiguration of a flexible thin plate[J]. Journal of Fluids & Structures,2018,77: 134-150.
    [3]NOYES C, QIN C, LOTH E. Tower shadow induced blade loads for an extreme-scale downwind turbine[J]. Wind Energy,2020,23(3): 458-470.
    [4]ZHU X, CHEN J, SHEN X, et al. Impact of blade flexibility on wind turbine loads and pitch settings[J]. Journal of Solar Energy Engineering,2019,141(4). DOI: 10.1115/1.4042315.
    [5]THIRIA B, GODOY D R. How wing compliance drives the efficiency of self-propelled flapping flyers[J]. Physical Review E,2010,82(1): 015303.
    [6]WU W, MA B L, FAN J J, et al. Management of nitrogen fertilization to balance reducing lodging risk and increasing yield and protein content in spring wheat[J]. Field Crops Research,2019,241: 107584.
    [7]BIGGS H J, NIKORA V I, GIBBINS C N, et al. Flow interactions with an aquatic macrophyte: a field study using stereoscopic particle image velocimetry[J]. Journal of Ecohydraulics,2019,4(2): 113-130.
    [8]GARDINER B, BERRY P, MOULIA B. Wind impacts on plant growth, mechanics and damage[J]. Plant Science,2016,245: 94-118.
    [9]王祥斌, 吴龙华. 挺水植被弯曲变形对水流阻力的影响研究[J]. 人民长江, 2019,50(5): 164-169.(WANG Xiangbin, WU Longhua. Study on the influence of bending deformation of emergent vegetation on flow resistance[J]. Yangtze River,2019,50(5): 164-169.(in Chinese))
    [10]江春波, 侯迪, 惠二青. 河道植被对水流运动影响研究之现状[J]. 水力发电, 2009,35(7): 11-13.(JIANG Chunbo, HOU Di, HUI Erqing. Current status of studies on effects of river vegetation on flow movement[J]. Water Power,2009,35(7): 11-13.(in Chinese))
    [11]HARDER D, SPECK O, HURD C, et al. Reconfiguration as a prerequisite for survival in highly unstable flow dominated habitats[J]. Journal of Plant Growth Regulation,2004,23(2): 98-107.
    [12]VOLLSINGER S, MITCHELL S J, BYRNE K E. Wind tunnel measurements of crown streamlining and drag relationships for several hardwood species[J]. Canadian Journal of Forest Research,2005,35(5): 1238-1249.
    [13]ALBEN S, SHELLEY M, ZHANG J. Drag reduction through self similar bending of a flexible body[J]. Nature,2002,420(6915): 479-481.
    [14]ALBEN S, SHELLEY M, ZHANG J. How flexibility induces streamlining in a two dimensional flow[J]. Physics of Fluids,2004,16(5): 1694-1713.
    [15]贾来兵. 二维流场中板状柔性体与流体相互作用的研究[D]. 博士学位论文. 合肥: 中国科学技术大学, 2009.(JIA Laibing. The interaction between flexible plates and fluid in two-dimensional flow[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2009.(in Chinese))
    [16]SILVA-LEON J, CIONCOLINI A , FILIPPONE A, et al. Flow-induced motions of flexible filaments hanging in cross-flow[J]. Experimental Thermal & Fluid Science,2018,97: 254-269.
    [17]ZHU L. Scaling laws for drag of a compliant body in an incompressible viscous flow[J]. Journal of Fluid Mechanics,2008,607: 387-400.
    [18]LUHAR M, NEPF H M. Flow-induced reconfiguration of buoyant and flexible aquatic vegetation[J]. Limnology and Oceanography,2011,56(6): 2003-2017.
    [19]LECLERCQ T, LANGRE D E. Reconfiguration of elastic blades in oscillatory flow[J]. Journal of Fluid Mechanics,2018,838: 606-630.
    [20]LECLERCQ T, LANGRE D E. Vortex-induced vibrations of cylinders bent by the flow[J]. Journal of Fluids and Structures,2018,80: 77-93.
    [21]TIMOSHENKO S P, GERE J M . Mechanics of Materials[M]. Van Nostrand Reinhold Co, 1972.
    [22]张志刚, 齐朝晖, 吴志刚. 基于曲率插值的大变形梁单元[J]. 应用数学和力学, 2013,34(6): 620-629.(ZHANG Zhigang, QI Zhaohui, WU Zhigang. Large deformation beam element based on curvature interpolation[J]. Applied Mathematics and Mechanics,2013,34(6): 620-629.(in Chinese))
    [23]卜万奎, 徐慧, 赵玉成. 基于曲梁弹性理论的弯曲覆岩变形及应力分析[J]. 应用数学和力学, 2020,41(3): 302-318.(BU Wankui, XU Hui, ZHAO Yucheng. Deformation and stress analysis of curved overburden based on curved beam elastic theory[J]. Applied Mathematics and Mechanics,2020,41(3): 302-318.(in Chinese))
    [24]SCHMIDT R A, GLUNS D R. Snowfall interception on branches of three conifer species[J]. Canadian Journal of Forest Research,1991,21(8): 1262-1269.
  • 加载中
计量
  • 文章访问数:  585
  • HTML全文浏览量:  70
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 修回日期:  2020-11-09

目录

    /

    返回文章
    返回