留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

求解二维Euler方程的旋转通量混合格式

贾豆 郑素佩

贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196
引用本文: 贾豆, 郑素佩. 求解二维Euler方程的旋转通量混合格式[J]. 应用数学和力学, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196
JIA Dou, ZHENG Supei. A Hybrid Scheme of Rotational Flux for Solving 2D Euler Equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196
Citation: JIA Dou, ZHENG Supei. A Hybrid Scheme of Rotational Flux for Solving 2D Euler Equations[J]. Applied Mathematics and Mechanics, 2021, 42(2): 170-179. doi: 10.21656/1000-0887.410196

求解二维Euler方程的旋转通量混合格式

doi: 10.21656/1000-0887.410196
基金项目: 国家自然科学基金(11971075;11401045;11901051)
详细信息
    作者简介:

    贾豆(1995—),女,硕士生(E-mail: 1429594854@qq.com);郑素佩(1978—),女,副教授,博士,硕士生导师(通讯作者. E-mail: zsp2008@chd.edu.cn).

  • 中图分类号: O354|O241.82

A Hybrid Scheme of Rotational Flux for Solving 2D Euler Equations

Funds: The National Natural Science Foundation of China(11971075;11401045;11901051)
  • 摘要: 为提高求解二维Euler方程数值结果的分辨率,提出了一种旋转通量混合格式.该算法采用旋转通量法的类一维处理思想,通量函数选用满足热力学第二定律的熵稳定数值通量和具有良好鲁棒性的HLL数值通量耦合的混合格式,时间方向采用三阶强稳定Runge-Kutta方法进行推进.该旋转通量混合格式具有结构简单、分辨率高的优点,数值结果表明了该算法的良好特性.
  • [1] GODUNOV S. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics[J]. Matematiceskij Sbornik,1959,47(2): 271-306.
    [2] VAN LEER B.Towards the ultimate conservative difference scheme, Ⅴ: a second-order sequel to Godunov’s method[J]. Journal of Computational Physics1979,32(1): 101-136.
    [3] ROE P. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics,1981,43(1): 357-372.
    [4] LION M S. Mass flux schemes and connection to shock instability[J]. Journal of Computational Physics,2000,160(2): 623-648.
    [5] PANDOLFI M, AMBROSIO D. Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon[J]. Journal of Computational Physics,2001,166(2): 271-301.
    [6] QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids,1994,18(6): 550-569.
    [7] SANDERS R, MORANO E, DRUGUET M. Multidimensional dissipation for upwind schemes: stability and applications to gas dynamics[J]. Journal of Computational Physics,1998,145(2): 511-537.
    [8] LEVY D W, POWELL K G, VAN LEER B. Use of a rotated Riemann solver for the two-dimensional Euler equations[J]. Journal of Computational Physics,1993,106(2): 201-214.
    [9] REN Y X. A robust shock-capturing scheme based on rotated Riemann solvers[J]. Computer & Fluids,2003,32(6): 1379-1403.
    [10] NISHIKAWA H, KITAMURA K. Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J]. Journal of Computational Physics,2008,227(4): 2560-2581.
    [11] ZHANG F, LIU J. Evaluation of rotated upwind schemes for contact discontinuity and strong shock[J]. Computer & Fluids,2016,134: 11-22.
    [12] 刘友琼, 封建湖, 任烔, 等. 求解多维Euler方程的二阶旋转混合型格式[J]. 应用数学和力学, 2014,35(5): 542-553.(LIU Youqiong, FENG Jianhu, REN Tong, et al. Second order rotational hybrid scheme for solving multi-dimensional Euler equation[J]. Applied Mathematics and Mechanics,2014,35(5): 542-553.(in Chinese))
    [13] LAX P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J]. Communications on Pure and Applied Mathematics,1954,7(1): 159-193.
    [14] ISMAIL F, ROE P L. Affordable, entropy-consistent Euler flux functions Ⅱ: entropy production at shocks[J]. Journal of Computational Physics,2009,228(4): 5410-5436.
    [15] TADMOR E. Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity[J]. Journal of Hyperbolic Differential Equations,2006,3(3): 529-559.
    [16] 郑素佩, 王令, 王苗苗. 求解二维浅水波方程的移动网格旋转通量法[J]. 应用数学和力学, 2020,41(1): 42-53.(ZHENG Supei, WANG Ling, WANG Miaomiao. Solution of 2D shallow water wave equation with the moving-grid rotating-invariance method[J]. Applied Mathematics and Mechanics,2020,41(1): 42-53.(in Chinese))
    [17] TORO F. Riemann Solvers and Numerical Methods for Fluid Dynamics [M]. Berlin: Springer, 2013.
    [18] SHU C W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[J]. National Aeronautics and Space Administration,1997,97(1): 206-253.
    [19] TADMOR E. The numerical viscosity of entropy stable schemes for systems of conservation laws: Ⅰ[J]. Mathematics of Computation,1987,49(179): 91-103.
    [20] TADMOR E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems[J]. Acta Numerica,2003,12: 451-512.
    [21] HARTEN A, LAX P D, VAN LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review,1983,25(1): 35-61.
    [22] LAX P, LIU X D. Solution of two-dimensional Riemann problems of gas dynamics by positive schemes[J]. SIAM Journal on Scientific Computing,1998,19(2): 319-340.
    [23] WOODWARD P, COLELLA P. The numerical simulation of two-dimensional fluid flow with strong shocks[J]. Journal of Computation Physics,1984,54(1): 115-173.
  • 加载中
计量
  • 文章访问数:  1358
  • HTML全文浏览量:  260
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-19
  • 修回日期:  2020-07-19
  • 刊出日期:  2021-02-01

目录

    /

    返回文章
    返回