留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有反应扩散项的变时滞复数域神经网络的指数稳定性

施继忠 徐晓惠 蒋永华 杨继斌 孙树磊

施继忠, 徐晓惠, 蒋永华, 杨继斌, 孙树磊. 具有反应扩散项的变时滞复数域神经网络的指数稳定性[J]. 应用数学和力学, 2021, 42(5): 500-509. doi: 10.21656/1000-0887.410245
引用本文: 施继忠, 徐晓惠, 蒋永华, 杨继斌, 孙树磊. 具有反应扩散项的变时滞复数域神经网络的指数稳定性[J]. 应用数学和力学, 2021, 42(5): 500-509. doi: 10.21656/1000-0887.410245
SHI Jizhong, XU Xiaohui, JIANG Yonghua, YANG Jibin>, SUN Shulei. Exponential Stability of Complex-Valued Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms[J]. Applied Mathematics and Mechanics, 2021, 42(5): 500-509. doi: 10.21656/1000-0887.410245
Citation: SHI Jizhong, XU Xiaohui, JIANG Yonghua, YANG Jibin>, SUN Shulei. Exponential Stability of Complex-Valued Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms[J]. Applied Mathematics and Mechanics, 2021, 42(5): 500-509. doi: 10.21656/1000-0887.410245

具有反应扩散项的变时滞复数域神经网络的指数稳定性

doi: 10.21656/1000-0887.410245
基金项目: 国家重点研发计划(2018YFB1201603); 四川省科技厅重大专项项目(2019ZDZX0002); 浙江省自然科学基金(LY18G010009); 成都市重大科技创新项目(2019YF0800003GX); 四川省科技厅项目(2018GZ0110);四川省重点研发计划项目(2020YFG0023;2021YFG0071)
详细信息
    作者简介:

    施继忠(1977—), 男, 副教授, 博士(E-mail: shijizhong@zjnu.cn);徐晓惠(1982—), 女, 副教授, 博士(通讯作者. E-mail: xhxu@163.com);蒋永华(1982—), 男, 副教授, 博士(E-mail: yonghua_j@zjnu.cn);杨继斌(1989—), 男, 讲师, 博士(E-mail: yangbijin08@163.com);孙树磊(1985—), 男, 副教授, 博士(E-mail: shuleisun@foxmail.com).

  • 中图分类号: O175.13

Exponential Stability of Complex-Valued Neural Networks With Time-Varying Delays and Reaction-Diffusion Terms

  • 摘要: 该文研究了一类具有反应扩散项的变时滞复数域神经网络的指数稳定性.首先在假设复数域激活函数可分解的情况下,将该系统分解为相应的实部系统和虚部系统.利用矢量Lyapunov函数法和M矩阵理论,得到了确保该系统平衡状态指数稳定性的充分条件.该条件不含有任何自由变量,相对现有结论具有较低的保守性.最后通过一个数值仿真算例验证了所得结论的正确性.
  • [1] HIROSE A. Recent progress in applications of complex-valued neural networks[C]//Proceedings of 10th International Conference on Artificiality Intelligence Soft Computing Ⅱ . Zakopane, Poland, 2010.
    [2] HU J, WANG J. Global stability of complex-valued recurrent neural networks with time-delays[J]. IEEE Transactions on Neural Networks and Learning Systems,2012,23(6): 853-864.
    [3] XU X H, ZHANG J Y, SHI J Z. Exponential stability of complex-valued neural networks with mixed delays[J]. Neurocomputing,2014,128: 483-490.
    [4] SONG Q K, YU Q Q, ZHAO Z J, et al. Boundedness and global robust stability analysis of delayed complex-valued neural networks with interval parameter uncertainties[J]. Neural Networks,2018,103: 55-62.
    [5] GUO R N, ZHANG Z Y, LIU X P, et al. Existence, uniqueness, and exponential stability analysis for complex-valued memristor-based BAM neural networks with time delays[J]. Applied Mathematics and Computation,2017,311: 100-117.
    [6] GUO R N, ZHANG Z Y, LIU X P, et al. Exponential input-to-state stability for complex-valued memristor-based BAM neural networks with multiple time-varying delays[J]. Neurocomputing,2018,275: 2041-2054.
    [7] SHI Y C, CAO J D, CHEN G R. Exponential stability of complex-valued memristor-based neural networks with time-varying delays[J]. Applied Mathematics and Computation,2017,〖STHZ〗 313: 222-234.
    [8] WANG L M, SONG Q K, LIU Y R, et al. Global asymptotic stability of impulsive fractional-order complex-valued neural networks with time delay[J]. Neurocomputing,2017,〖STHZ〗 243: 49-59.
    [9] 徐晓惠, 宋乾坤, 张继业, 等. 一类变时滞复数Cohen-Grossberg神经网络的动态行为分析[J]. 应用数学和力学, 2017,38(12): 1389-1398.(XU Xiaohui, SONG Qiankun, ZHANG Jiye, et al. Dynamical behavior analysis for a class of complex-valued neural networks with time-varying delays[J]. Applied Mathematics and Mechanics,2017,38(12): 1389-1398.(in Chinese))
    [10] HU B X, SONG Q K, ZHAO Z J. Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach[J]. Applied Mathematics and Computation,2020,373: 125033.
    [11] WANG P F, ZOU W Q, SU H. Stability of complex-valued impulsive stochastic functional differential equations on networks with Markovian switching[J]. Applied Mathematics and Computation,2019,348: 338-354.
    [12] CAO Y, SRIRAMAN R, SHYAMSUNDARRAJ N, et al. Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays[J]. Mathematics and Computers in Simulation,2020,171: 207-220.
    [13] 徐晓惠, 张继业, 施继忠, 等. 脉冲干扰时滞复值神经网络的稳定性分析[J]. 哈尔滨工业大学学报, 2016,48(3): 166-170.(XU Xiaohui, ZHANG Jiye, SHI Jizhong, et al. Stability analysis of delayed complex-valued neural networks with impulsive disturbances[J]. Journal of Harbin Institute of Technology,2016,48(3): 166-170.(in Chinese))
    [14] 徐晓惠, 施继忠, 严超, 等. 一类复值神经网络的随机指数鲁棒稳定性[J]. 电子科技大学学报, 2019,48(3): 374-380.(XU Xiaohui, SHI Jizhong, YAN Chao, et al. Stochastic exponential robust stability of a class of complex-valued neural networks[J]. Journal of University of Electronic Science and Technology of China,2019,48(3): 374-380.(in Chinese))
    [15] WANG J L, WU H N, GUO L. Passivity and stability analysis of reaction-diffusion neural networks with Dirichlet boundary conditions[J]. IEEE Transactions on Neural Networks,2011,22(12): 2105-2116.
    [16] SHENG Y, ZHANG H, ZNEG Z G. Stability and robust stability of stochastic reaction-diffusion neural networks with infinite discrete and distributed delays[J]. IEEE Transactions on Systems, Man, and Cybernetics Systems,2020,50(5): 1721-1732.
    [17] WANG J L, QIU S H, CHEN W Z, et al. Recent advances on dynamical behaviors of coupled neural networks with and without reaction-diffusion terms[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,31(12): 5231-5244.
    [18] DONG T, BAI J Q, YANG L. Bifurcation analysis of delayed complex-valued neural network with diffusions[J]. Neural Processing Letters,2019,50: 1019-1033.
    [19] XU X H, ZHANG W H, ZHANG J Y. Mean square exponential stability of stochastic neural networks with reaction-diffusion terms and delays[J]. Applied Mathematics Letters,2011,24(1): 5-11.
  • 加载中
计量
  • 文章访问数:  1082
  • HTML全文浏览量:  275
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 修回日期:  2020-11-10
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回