[1] |
ARANSON I, KRAMER L. The world of the complex Ginzburg-Landau equation[J]. Review of Modern Physics,2001,74(1): 99-143.
|
[2] |
CHEN A Y, GUO L N, DENG X J. Existence of solitary waves and periodic waves for a perturbed generalized BBM equation[J]. Journal of Differential Equations,2016,261(10): 5324-5349.
|
[3] |
ZHUANG K G, DU Z J, LIN X J. Solitary waves solutions of singularly perturbed higher-order KdV equation via geometric singular perturbation method[J]. Nonlinear Dynamics,2015,80(1/2): 629-635.
|
[4] |
MANSOUR M B A. Traveling wave solutions of a reaction-diffusion model for bacterial growth[J]. Physica A: Statistical Mechanics and Its Applications,2007,383(2): 466-472.
|
[5] |
SHERRATT J A, SMITH M J. Periodic travelling waves in cyclic populations: field studies and reaction-diffusion models[J]. Journal of the Royal Society Interface,2008,5(22): 483-505.
|
[6] |
LI J B, WU J H, ZHU H P. Traveling waves for an integrable higher order KdV type wave equations[J]. International Journal of Bifurcation and Chaos,2006,16(8): 2235-2260.
|
[7] |
MANOSA V. Periodic travelling waves in nonlinear reaction-diffusion equations via multiple Hopf bifurcation[J]. Chaos, Solitons and Fractals,2003,18(2): 241-257.
|
[8] |
HUANG W T, CHEN T, LI J B. Isolated periodic wave trains and local critical wave lengths for a nonlinear reaction-diffusion equation[J]. Communications in Nonlinear Science and Numerical Simulation,2019,74(5): 84-96.
|
[9] |
SANCHEAGARDUNO F, MAINI P K. Traveling wave phenomena in some degenerate reaction-diffusion equations[J]. Journal of Differential Equations,1995,117(2): 281-319.
|
[10] |
YANG G X. Hopf bifurcation of traveling wave solutions of delayed Fisher-KPP equation[J]. Applied Mathematics and Computation,2013,220(4): 213-220.
|
[11] |
CHICONE C, JACOBS M. Bifurcation of critical periods for plane vector fields[J]. Transactions of the American Mathematical Society,1989,312(2): 433-486.
|
[12] |
ROMANOVSKI V G, HAN M A. Critical period bifurcations of a cubic system[J]. Journal of Physics A: Mathematical and General,2003,36(18): 5011-5022.
|
[13] |
ROUSSEAU C, TONI B. Local bifurcations of critical periods in the reduced Kukles system[J]. Canadian Journal of Mathematics,1997,49(2): 338-358.
|
[14] |
YU P, HAN M A. Critical periods of planar revertible vector field with third-degree polynomial functions[J]. International Journal of Bifurcation and Chaos,2009,19(1): 419-433.
|
[15] |
LIU Y R, LI J B. Theory of values of singular point in complex autonomous differential systems[J]. Science in China (Series A),1990,33: 10-24.
|
[16] |
黄文韬. 微分自治系统的几类极限环分支与等时中心问题[D]. 博士学位论文. 长沙: 中南大学, 2004. (HUANG Wentao. Several classes of bifurcations of limit cycles and isochronous centers for differential autonomous systems[D]. PhD Thesis. Changsha: Central South University, 2004. (in Chinese))
|
[17] |
LIU Y R, HUANG W T. A new method to determine isochronous center conditions for polynomial differential systems[J]. Bulletin des Sciences Mathématiques,2003,127(2): 133-148.
|
[18] |
YU P, HAN M A. Twelve limit cycles in a cubic case of the 16th Hilbert problem[J]. International Journal of Bifurcation and Chaos,2005,15(7): 2191-2205.
|
[19] |
CHEN H B, LIU Y R. Linear recursion formulas of quantities of singular point and applications[J]. Applied Mathematics and Computation,2004,148(1): 163-171.
|
[20] |
GEYER A, VILLADELPRAT J. On the wave length of smooth periodic traveling waves of the Camassa-Holm equation[J]. Journal of Differential Equations,2015,259(6): 2317-2332.
|