留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类Lotka-Volterra竞争模型的最小波速

张亚菲 周音波

张亚菲, 周音波. 一类Lotka-Volterra竞争模型的最小波速[J]. 应用数学和力学, 2021, 42(6): 575-585. doi: 10.21656/1000-0887.410279
引用本文: 张亚菲, 周音波. 一类Lotka-Volterra竞争模型的最小波速[J]. 应用数学和力学, 2021, 42(6): 575-585. doi: 10.21656/1000-0887.410279
ZHANG Yafei, ZHOU Yinbo. The Minimal Wave Speed of a Lotka-Volterra Competition Model[J]. Applied Mathematics and Mechanics, 2021, 42(6): 575-585. doi: 10.21656/1000-0887.410279
Citation: ZHANG Yafei, ZHOU Yinbo. The Minimal Wave Speed of a Lotka-Volterra Competition Model[J]. Applied Mathematics and Mechanics, 2021, 42(6): 575-585. doi: 10.21656/1000-0887.410279

一类Lotka-Volterra竞争模型的最小波速

doi: 10.21656/1000-0887.410279
基金项目: 

国家自然科学基金(11671315)

详细信息
    作者简介:

    张亚菲(1996—), 女, 硕士生(通讯作者. E-mail: zhangyafei@stu.xidian.edu.cn);周音波(1996—), 女, 硕士生(E-mail: 1136339034@qq.com).

    通讯作者:

    张亚菲(1996—), 女, 硕士生(通讯作者. E-mail: zhangyafei@stu.xidian.edu.cn)

  • 中图分类号: O175.26

The Minimal Wave Speed of a Lotka-Volterra Competition Model

Funds: 

The National Natural Science Foundation of China(11671315)

  • 摘要: 研究了一类带有单稳非线性项的三物种竞争系统行波解最小波速的速度选择.首先利用比较方法,通过构造适当的上下解,建立了最小波速的速度选择机制.然后证明了物种的竞争系数关于速度选择的阈值结果,并得到了阈值的估计.最后借助数值模拟说明所得结果推广了已有文献的相关工作.
  • [2]WU C H. A general approach to the asymptotic behavior of traveling waves in a class of three-component lattice dynamical systems[J]. Journal of Dynamics and Differential Equations,2016,28: 317-338.
    MIMURA M, FIFE P C. A 3-component system of competition and diffusion[J]. Hiroshima Mathematical Journal,1986,16: 189-207.
    [3]CHEN C C, HUNG L C, MIMURA M, et al. Exact traveling wave solutions of three species competition-diffusion systems[J]. Discrete and Continuous Dynamical Systems(Series B),2012,17: 2653-2669.
    [4]WU C C. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system[J]. Discrete and Continuous Dynamical Systems,2017,37: 2813-2827.
    [5]GUO J S, WANG Y, WU C H, et al. The minimal speed of traveling wave solutions for a diffusive three species competition system[J]. Taiwanese Journal of Mathematics,2015, 19: 1805-1829.
    [6]谷雨萌, 黄明迪. 一类时间周期的时滞竞争系统行波解的存在性[J]. 应用数学和力学, 2020,41(6): 658-668.(GU Yumeng, HUANG Mingdi. Existence of periodic traveling waves for time-periodic Lotka-Volterra competition systems with delay[J]. Applied Mathematics and Mechanics,2020,41(6): 658-668.(in Chinese))
    [7]ALHASANAT A, OU C. Minimal-speed selection of traveling waves to the Lotka-Volterra competition model[J]. Journal of Differential Equations,2019,266: 7357-7378.
    [8]ALHASANAT A, OU C. On a conjecture raised by Yuzo Hosono[J]. Journal of Dynamics and Differential Equations,2018,4: 1-18.
    [9]HOSONO Y. Traveling waves for diffusive Lotka-Volterra competition model Ⅱ: a geometric approach[J]. Forma,1995,10: 235-257.
    [10]HOSONO Y. The minimal speed of traveling fronts for diffusive Lotka-Volterra competition model[J]. Bulletin of Mathematical Biology,1998,60: 435-448.
    [11]WEINBERGER H F, LEWIS M A, LI B. Analysis of linear determinacy for spread in cooperative models[J]. Journal of Mathematical Biology,2002,45: 183-218.
    [12]LEWIS M A, LI B, WEINBERGER H F. Spreading speed and linear determinacy for two-species competition models[J]. Journal of Mathematical Biology,2002,45: 219-233.
    [13]WANG H, HUANG Z, OU C. Speed selection for the wavefronts of the lattice Lotka-Volterra competition system[J]. Journal of Differential Equations,2020,268: 3880-3902.
    [14]HUANG W. Problem on minimum wave speed for Lotka-Volterra reaction-diffusion competition model[J]. Journal of Dynamics and Differential Equations,2010, 22: 285-297.
    [15]GUO J S, WU C H. Traveling wave front for a two-component lattice dynamical system arising in competition models[J]. Journal of Differential Equations,2012,252: 4357-4391.
    [16]GUO J S, LIANG X. The minimal speed of traveling fronts for the Lotka-Volterra competition system[J]. Journal of Dynamics and Differential Equations,2011, 23: 353-363.
    [17]FANG J, ZHAO X. Bistable traveling waves for monotone semiflows with applications[J]. Journal of the European Mathematical Society,2015,17: 2243-2288.
  • 加载中
计量
  • 文章访问数:  686
  • HTML全文浏览量:  149
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16

目录

    /

    返回文章
    返回