留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LiToSim平台的海上风机过渡段优化软件开发

叶彦鹏 顾水涛 刘敏 冯志强

叶彦鹏, 顾水涛, 刘敏, 冯志强. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42(5): 441-451. doi: 10.21656/1000-0887.410354
引用本文: 叶彦鹏, 顾水涛, 刘敏, 冯志强. 基于LiToSim平台的海上风机过渡段优化软件开发[J]. 应用数学和力学, 2021, 42(5): 441-451. doi: 10.21656/1000-0887.410354
YE Yanpeng, GU Shuitao, LIU Min, FENG Zhiqiang. Optimization Software Development for Offshore Turbine Transition Structures Based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42(5): 441-451. doi: 10.21656/1000-0887.410354
Citation: YE Yanpeng, GU Shuitao, LIU Min, FENG Zhiqiang. Optimization Software Development for Offshore Turbine Transition Structures Based on LiToSim[J]. Applied Mathematics and Mechanics, 2021, 42(5): 441-451. doi: 10.21656/1000-0887.410354

基于LiToSim平台的海上风机过渡段优化软件开发

doi: 10.21656/1000-0887.410354
基金项目: 国家科学自然基金(11772274)
详细信息
    作者简介:

    叶彦鹏(1995—),男,硕士生(E-mail: 315107959@qq.com);顾水涛(1979—),男,教授(E-mail: gust@cqu.edu.cn);刘敏(1987—),男,副教授(E-mail: liu.min@cqu.edu.cn);冯志强(1963—),男,教授,博士生导师(通讯作者. E-mail: zhiqiang.feng@univ-evry.fr).

  • 中图分类号: O39

Optimization Software Development for Offshore Turbine Transition Structures Based on LiToSim

Funds: The National Natural Science Foundation of China(11772274)
  • 摘要: 针对海上风机过渡段结构,考虑风机多尺度优化模型和所受环境荷载采取极端情况下,引入双向渐进结构拓扑优化方法,以全局应力最小化为目标、体积为约束,对风机过渡段进行优化设计;并在自主研发的LiToSim平台基础上,嵌入风机优化数值计算程序,最终形成一款关于海上风机过渡段拓扑优化的定制化软件TUR/TOPT.借助定制化软件TUR/TOPT平台,对比过渡段传统柔度优化与应力优化结果,突显出应力优化在减材设计过程中结构应力明显降低且能有效避免应力集中等方面的优势;TUR/TOPT软件的生成在风机建设选型过程中具有重要指导价值.
  • [1] MUSKULUS M, SCHAFHIRT S. Design optimization of wind turbine support structures: a review[J]. Journal of Ocean and Wind Energy,2014,1(1): 12-22.
    [2] LEE Y S, GONZ LEZ J A, LEE J H, et al. Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation[J]. Renewable Energy,2016,85: 1214-1225.
    [3] NATARAJAN A, STOLPE M, WANDJI W N . Structural optimization based design of jacket type sub-structures for 10 MW offshore wind turbines[J]. Ocean Engineering,2019,172: 629-640.
    [4] GENTILS T, WANG L, KOLIOS A. Integrated structural optimization of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Applied Energy,2017,199: 187-204.
    [5] 田晓洁, 李道喜, 刘贵杰, 等. 导管架式海上风机支撑结构优化设计研究[C]//第十九届中国海洋(岸)工程学术讨论会论文集. 重庆, 2019: 238-242.(TIAN Xiaojie, LI Daoxi, LIU Guijie, et al. Research on optimal design of jacketed offshore wind turbine support structure[C]// 19th China Ocean(Shore)Engineering Symposium. Chongqing, 2019: 238-242.(in Chinese))
    [6] 蔺磊. 海上风机基础结构过渡段优化设计研究[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2014.(LIN Lei. The optimization design research for the foundation of offshore wind turbine’s transition section[D]. Master Thesis. Harbin: Harbin Engineering University, 2014.(in Chinese))
    [7] 张立英. 风机基础结构数值模拟及优化设计研究[D]. 硕士学位论文. 天津: 天津大学, 2009.(ZHANG Liying. The finite element analysis and structural optimization design for wind turbine foundation[D]. Master Thesis. Tianjin: Tianjin University, 2009.(in Chinese))
    [8] WANG L, KOLIOS A, NISHINO T, et al. Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm[J]. Composite Structures,2016,153(10): 123-138.
    [9] LE C, NORATO J, BRUNS T, et al. Stress-based topology optimization for continua[J]. Structural and Multidisciplinary Optimization,2010,41(4): 605-620.
    [10] LUO Y J, WANG M Y, KANG Z. An enhanced aggregation method for topology optimization with local stress constraints[J]. Computer Methods in Applied Mechanics and Engineering,2013,254: 31-41.
    [11] XIA L, ZHANG L, XIA Q, et al. Stress-based topology optimization using bi-directional evolutionary structural optimization method[J]. Computer Methods in Applied Mechanics and Engineering,2018,333: 356-370.
    [12] 冯志强, 刘建涛, 彭磊, 等. 自主CAE平台及计算力学软件研发新进展[J]. 西南交通大学学报, 2016,51(3): 519-524.(FENG Zhiqiang, LIU Jiantao, PENG Lei, et al. New development of CAE platform and computational mechanics software[J]. Journal of Southwest Jiaotong University,2016,51(3): 519-524.(in Chinese))
    [13] HUANG X, XIE Y M. Evolutionary Topology Optimization of Continuum Structures: Methods and Applications [M]. Wiley, 2010.
    [14] XIA L, XIA Q, HUANG X D, et al. Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review[J]. Archives of Computational Methods in Engineering,2018,25(2): 437-478.
    [15] 任高晖. 基于BESO法的结构拓扑优化研究与应用[D]. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2016.(REN Gaohui. Research and application of structural topology optimization based on BESO method[D]. Master Thesis. Harbin: Harbin Engineering University, 2016.(in Chinese))
    [16] HUANG X, XIE Y M. Convergent and mesh-independent solutions for bi-directional evolutionary structural optimization method[J]. Finite Elements in Analysis and Design,2007,43(14): 1039-1049.
    [17] LIU M, CHEN X Z, YANG Q S. Estimation of peak factor of non-Gaussian wind pressures by improved moment-based Hermite model[J]. Journal of Engineering Mechanics,2017,143(7): 1-9.
    [18] CHEN X Z. Extreme value distribution and peak factor of crosswind response of flexible structures with nonlinear aeroelastic effect[J]. Journal of Structural Engineering,2014,140(12): 04014091.
    [19] DING J, CHEN X Z. Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples[J]. Engineering Structures,2014,80: 75-88.
    [20] KOWN D K, KAREEM A. Peak factors for non-Gaussian load effect revisited[J]. Journal of Structural Engineering,2011,137(12): 1611-1619.
    [21] 俞载道, 曹国熬. 随机振动理论及其应用[M]. 上海: 同济大学出版社, 1988.(YU Zaidao, CAO Guoao. Random Vibration Theory and Application [M]. Shanghai: Tongji University Press, 1988.(in Chinese))
    [22] MCCUNE R W, ARMSTRONG C G. Mixed-dimensional coupling in finite element models[J]. International Journal for Numerical Methods in Engineering,2000,49(6): 725-750.
    [23] YU Y, CHAN T H T, SUN Z H, et al. Mixed-dimensional consistent coupling by multi-point constraint equations for efficient multi-scale modeling[J]. Advances in Structural Engineering,2012,15(5): 837-854.
    [24] ARMSTRONG C G, MCCUNE R W, ROBINSON D J. Multi-dimensional analysis modeling[C]// Proceedings of 6th ACME Annual Conference on Computational Mechanics . UK, 1998: 47-50.
    [25] 冯志强. 自主CAE平台OmtDesk及计算软件研发新进展[C]//第十届中国CAE工程分析技术年会会议论文集. 贵阳: 中国学术期刊电子出版社, 2014.(FENG Zhiqiang. New development of CAE platform OmtDesk and computational software[C]// 10th China CAE Engineering Analysis Technology Annual Conference . Guiyang: China Academic Journal Electronic Publishing House, 2014.(in Chinese))
    [26] DAMIAN R R, SONG H M, ROBERTSON A N, et al. Assessing the importance of nonlinearities in the development of a substructure model for wind turbine CAE tool FAST[C]//The 32th International Conference on Ocean, Offshore and Arctic Engineering . Nantes, France, 2013.
    [27] WEI K, ARWADE S R, MYERS A T, et al. Toward performance-based evalution for offshore wind turbine jacket support structures[J]. Renewable Energy,2016,97: 709-721.
  • 加载中
计量
  • 文章访问数:  1002
  • HTML全文浏览量:  201
  • PDF下载量:  235
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-21
  • 修回日期:  2021-04-06
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回