留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶Cable方程的有限点法分析

陈虹伶 李小林

陈虹伶,李小林. 分数阶Cable方程的有限点法分析 [J]. 应用数学和力学,2022,43(6):700-706 doi: 10.21656/1000-0887.420183
引用本文: 陈虹伶,李小林. 分数阶Cable方程的有限点法分析 [J]. 应用数学和力学,2022,43(6):700-706 doi: 10.21656/1000-0887.420183
CHEN Hongling, LI Xiaolin. Analysis of the Finite Point Method for Fractional Cable Equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 700-706. doi: 10.21656/1000-0887.420183
Citation: CHEN Hongling, LI Xiaolin. Analysis of the Finite Point Method for Fractional Cable Equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 700-706. doi: 10.21656/1000-0887.420183

分数阶Cable方程的有限点法分析

doi: 10.21656/1000-0887.420183
基金项目: 国家自然科学基金(面上项目)(11971085);重庆市高校创新研究群体(CXQT19018);重庆市教委科学技术研究项目(重大项目)(KJZD-M201800501);重庆市研究生教育教学改革研究项目(yjg203063)
详细信息
    作者简介:

    陈虹伶(1996—),女,硕士 ( E-mail:913626174@qq.com)

    李小林(1983—),男,教授, 博士 (通讯作者. E-mail:lxlmath@163.com)

  • 中图分类号: O241.82

Analysis of the Finite Point Method for Fractional Cable Equations

  • 摘要:

    通过采用中心差分格式离散Riemann-Liouville时间分数阶导数和用有限点法建立离散代数系统,提出了数值求解分数阶Cable方程的无网格有限点法,详细推导了该方法的理论误差估计。数值算例证实了该方法的有效性和收敛性,并验证了理论分析结果。

  • 图  1  算例在$ \alpha = 0.2 $$ \beta = 0.8 $$ T = 5 $$ h = {1 /{20}} $$ \tau = 1/20 $时的数值解和误差:(a) 数值解;(b) 误差

    Figure  1.  Numerical solution results and errors gained with $ \alpha = 0.2 $, $ \beta = 0.8 $, $ T = 5 $$ h = 1/20 $ and $ \tau = 1/20 $: (a) numerical solution results; (b) errors

    图  2  h=0.01,T=1时误差与时间步长$ \tau $的关系:(a) 相对误差;(b) $ {L^\infty } $误差

    Figure  2.  The relationship between relative errors and $ {L^\infty } $ errors obtained for h=0.01 and T=1 with respect to time-step size $ \tau $: (a) relative errors ; (b) $ {L^\infty } $ errors

    图  3  $\tau = 0.000\;1,\;T=1$时误差与节点间距$ h $的关系:(a) 相对误差;(b) $ {L^\infty } $误差

    Figure  3.  The relationship between relative errors and $ {L^\infty } $ errors obtained for $\tau = 0.000\;1\; {\rm{and}} \;\;T=1$ with respect to nodal spacing $ h $: (a) relative errors ; (b) $ {L^\infty } $ errors

    图  4  算例在$ \gamma = 0.4 $$ T = 5 $$ h = {1 / {20}} $$ \tau = 1/20 $时的数值解和误差:(a) 数值解;(b) 误差

    Figure  4.  Numerical solution results and errors gained with $ \gamma = 0.4 $, $ T = 5 $, $ h = 1/20 $ and $ \tau = 1/20 $: (a) numerical solution results; (b) errors

    图  5  误差与时间步长$ \tau $和节点间距$ h $的关系:(a) 时间步长$ \tau $;(b) 节点间距$ h $

    Figure  5.  The relationship between the errors and time-step size $ \tau $ as well as nodal spacing $ h $: (a) for time-step size $ \tau $; (b) for nodal spacing $ h $

    表  1  有限点法和径向基函数法在$h = 0.1 ,\;T=1$时的$ {L^\infty } $误差

    Table  1.   The $ {L^\infty } $-errors of the finite point method and the radial basis function method gained with $h = 0.1,\; T=1$

    $ \tau $$ \gamma = 0.25 $$ \gamma = 0.3 $
    the finite point methodthe radial basis function method[8]the finite point methodthe radial basis function method[8]
    1/101.670 9E−54.515 2E−42.256 6E−53.831 0E−4
    1/201.110 9E−52.542 5E−41.409 1E−51.926 8E−4
    1/407.983 2E−61.557 3E−49.429 7E−69.759 9E−4
    1/806.275 8E−61.065 3E−46.903 4E−65.011 6E−5
    下载: 导出CSV
  • [1] HU X L, ZHANG L M. Implicit compact difference schemes for the fractional Cable equation[J]. Applied Mathematical Modelling, 2012, 36(9): 4027-4043. doi: 10.1016/j.apm.2011.11.027
    [2] LIAO H L, SUN Z Z. Maximum norm error estimates of efficient difference schemes for second-order wave equations[J]. Journal of Computational and Applied Mathematics, 2010, 235(8): 2217-2233.
    [3] KHAN M A, ALI N H M, HAMID N N A. The design of new high-order group iterative method in the solution of two-dimensional fractional Cable equation[J]. Alexandria Engineering Journal, 2021, 60(4): 3553-3563. doi: 10.1016/j.aej.2021.01.008
    [4] QUINTANA-MURILLO J, YUSTE S B. An explicit numerical method for the fractional Cable equation[J]. International Journal of Differential Equations, 2011, 72(2): 447-466.
    [5] ZHUANG P, LIU F, ANH V, et al. Stability and convergence of an implicit numerical method for the non-linear fractional reaction-subdiffusion process[J]. IMA Journal of Applied Mathematics, 2005, 74: 645-667.
    [6] AL-MASKARI M, KARAA S. The lumped mass FEM for a time-fractional Cable equation[J]. Applied Numerical Mathematics, 2018, 132: 73-90. doi: 10.1016/j.apnum.2018.05.012
    [7] ZHENG R, LIU F, JIANG X, et al. Finite difference/spectral methods for the two-dimensional distributed-order time-fractional Cable equation[J]. Computers & Mathematics With Applications, 2020, 80(6): 1523-1537.
    [8] DEHGHAN M, ABBASZADEH M, MOHEBBI A. Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method[J]. Journal of Computational and Applied Mathematics, 2015, 280: 14-36. doi: 10.1016/j.cam.2014.11.020
    [9] DEHGHAN M, ABBASZADEH M. Analysis of the element free Galerkin (EFG) method for solving fractional Cable equation with Dirichlet boundary condition[J]. Applied Numerical Mathematics, 2016, 109: 208-234. doi: 10.1016/j.apnum.2016.07.002
    [10] CHENG Y M. Meshless Methods[M]. Beijing: Science Press, 2015.
    [11] 王红, 李小林. 二维瞬态热传导问题的无单元Galerkin法分析[J]. 应用数学和力学, 2021, 42(5): 460-469. (WANG Hong, LI Xiaolin. Analysis of 2D transient heat conduction problems with the element-free Galerkin method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 460-469.(in Chinese)

    WANG Hong, LI Xiaolin. Analysis of 2D transient heat conduction problems with the element-free Galerkin method[J]. Applied Mathematics and Mechanics, 2021, 42(5): 460-469. (in Chinese))
    [12] 李煜冬, 王发杰, 陈文. 瞬态热传导的奇异边界法及其MATLAB实现[J]. 应用数学和力学, 2019, 40(3): 259-268. (LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J]. Applied Mathematics and Mechanics, 2019, 40(3): 259-268.(in Chinese)

    LI Yudong, WANG Fajie, CHEN Wen. MATLAB implementation of a singular boundary method for transient heat conduction[J]. Applied Mathematics and Mechanics, 2019, 40(3): 259-268. (in Chinese))
    [13] OÑATE E, IDELSOHN S, ZIENKIEWICZ O C, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering, 1996, 39(22): 3839-3866. doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
    [14] ORTEGA E, FLORES R, OÑATE E, et al. A-posteriori error estimation for the finite point method with applications to compressible flow[J]. Computational Mechanics, 2017, 60: 219-233. doi: 10.1007/s00466-017-1402-7
    [15] OÑATE E, PERAZZO F, MIQUEL J. A finite point method for elasticity problems[J]. Computers & Structures, 2001, 79(22/25): 2151-2163.
    [16] LI X L, DONG H Y. Error analysis of the meshless finite point method[J]. Applied Mathematics and Computation, 2020, 382: 125326. doi: 10.1016/j.amc.2020.125326
    [17] CHEN C M, LIU F, TURNER I, et al. A Fourier method for the fractional diffusion equation describing sub-diffusion[J]. Journal of Computational Physics, 2007, 227(2): 886-897. doi: 10.1016/j.jcp.2007.05.012
    [18] LI X L. Error estimates for the moving least-square approximation and the element-free Galerkin method in n-dimensional spaces[J]. Applied Numerical Mathematics, 2016, 99: 77-97. doi: 10.1016/j.apnum.2015.07.006
    [19] BRENNER S C, SCOTT L R. The Mathematical Theory of Finite Element Methods[M]. New York: Springer, 1994.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  227
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-02
  • 修回日期:  2021-09-19
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-06-30

目录

    /

    返回文章
    返回