留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析

白羽 方慧灵 张艳

白羽,方慧灵,张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析 [J]. 应用数学和力学,2022,43(3):272-280 doi: 10.21656/1000-0887.420197
引用本文: 白羽,方慧灵,张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析 [J]. 应用数学和力学,2022,43(3):272-280 doi: 10.21656/1000-0887.420197
BAI Yu, FANG Huiling, ZHANG Yan. Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197
Citation: BAI Yu, FANG Huiling, ZHANG Yan. Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280. doi: 10.21656/1000-0887.420197

Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析

doi: 10.21656/1000-0887.420197
基金项目: 国家自然科学基金(21878018);北京市自然科学基金和北京市教育委员会联合资助项目(KZ201810016018)
详细信息
    作者简介:

    白羽(1979—),女,副教授,博士,硕士生导师 (通讯作者. E-mail:baiyu@bucea.edu.cn

    方慧灵(1997—),女,硕士生(E-mail:Niki9731@163.com

    张艳(1972—),女,教授,博士,硕士生导师(E-mail:zhangyan1@bucea.edu.cn

  • 中图分类号: O357

Unsteady Slip Flow and Heat Transfer Analysis of Oldroyd-B Fluid Over the Stretching Wedge

  • 摘要:

    研究了在速度滑移现象存在下,上随体Oldroyd-B流体绕加热的楔形体的非稳态流动。采用松弛-延迟热通量模型,模拟了传热过程和热延迟时间对传热的影响,通过考虑浮升力、热辐射和对流换热边界条件,进一步研究了流动及传热特性。利用同伦分析方法获得常微分方程组的近似解析解,发现滑移参数的增大可以促进流体的流动,以及流体的温度随热辐射参数增大而升高。此外还发现,温度场在热松弛时间和热延迟时间中出现相反的变化趋势。

  • 图  1  物理模型示意图

    Figure  1.  Schematic diagram of the physical model

    图  2  hf -f"(0)曲线图

    Figure  2.  The hf -f"(0) curve

    图  3  hθ-θ'(0)曲线图

    Figure  3.  The hθ-θ'(0) curve

    图  4  不同m下的速度分布

    Figure  4.  Velocity distributions for different m values

    图  5  不同A下的速度分布

    Figure  5.  Velocity distributions for different A values

    图  6  不同δ下的速度分布

    Figure  6.  Velocity distributions for different δ values

    图  7  不同β2下的速度分布

    Figure  7.  Velocity distributions for different β2 values

    图  8  不同λ下的速度分布

    Figure  8.  Velocity distributions for different λ values

    图  9  不同Nu下的温度分布

    Figure  9.  Temperature distributions for different Nu values

    图  10  不同β3下的温度分布

    Figure  10.  Temperature distributions for different β3 values

    图  11  不同β4下的温度分布

    Figure  11.  Temperature distributions for different β4 values

    图  12  不同Pr下的温度分布

    Figure  12.  Temperature distributions for different Pr values

    图  13  不同Rd下的温度分布

    Figure  13.  Temperature distributions for different Rd values

    表  1  同伦解f"(0)与文献[4]结果的比较

    Table  1.   Comparison of the values of f"(0) with the results of ref. [4]

    m01/51/3
    ref. [4]0.469 60.802 10.927 7
    present result0.469 60.802 10.927 7
    下载: 导出CSV
  • [1] FALKNER V M, SKAN S W. Solutions of the boundary-layer equations[J]. Philosophical Magazine, 1931, 12(80): 865-896.
    [2] LIN H T, LIN L K. Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number[J]. International Journal of Heat and Mass Transfer, 1987, 30(6): 1111-1118. doi: 10.1016/0017-9310(87)90041-X
    [3] KUO B L. Heat transfer analysis for the Falkner-Skan wedge flow by the differential transformation method[J]. International Journal of Heat and Mass Transfer, 2005, 48(23/24): 5036-5046.
    [4] AFIFY A A, BAZID M A A. MHD Falkner-Skan flow and heat transfer characteristics of nanofluids over a wedge with heat source/sink effects[J]. Journal of Computational and Theoretical Nanoscience, 2014, 11(8): 1844-1852. doi: 10.1166/jctn.2014.3578
    [5] ASHRAF M B, HAYAT T, ALSULAMI H. Mixed convection Falkner-Skan wedge flow of an Oldroyd-B fluid in presence of thermal radiation[J]. Journal of Applied Fluid Mechanic, 2016, 9: 1753-1762. doi: 10.18869/acadpub.jafm.68.235.24323
    [6] MAHDY A, CHAMKHA A J. Unsteady MHD boundary layer flow of tangent hyperbolic two-phase nanofluid of moving stretched porous wedge[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2018, 28(11): 2567-2580.
    [7] KEBEDE T, HAILE E, AWGICHEW G, et al. Heat and mass transfer analysis in unsteady flow of tangent hyperbolic nanofluid over a moving wedge with buoyancy and dissipation effects[J]. Heliyon, 2020, 6(4): e03776. doi: 10.1016/j.heliyon.2020.e03776
    [8] 朱婧, 郑连存, 张志刚. 幂律速度运动表面上磁流体在驻点附近的滑移流动[J]. 应用数学和力学, 2010, 31(4): 411-419. (ZHU Jing, ZHENG Liancun, ZAHNG Zhigang. Efect of the slip condition on the MHD stagnation-point flow over a power-law stretching sheet[J]. Applied Mathematics and Mechanics, 2010, 31(4): 411-419.(in Chinese) doi: 10.3879/j.issn.1000-0887.2010.04.004
    [9] ZHU J, YANG D, ZHENG L C, et al. Effects of second order velocity slip and nanoparticles migration on flow of Buongiorno nanofluid[J]. Applied Mathematics Letters, 2016, 52: 183-191. doi: 10.1016/j.aml.2015.09.003
    [10] 许晓勤, 陈淑梅. 基于二阶滑移边界的MHD 在可渗透延伸壁面上的驻点流研究[J]. 应用数学和力学, 2016, 37(8): 880-888. (XU Xiaoqin, CHEN Shumei. Study on MHD stagnation-point flow over permeable stretching sheets with 2nd-order slip boundaries[J]. Applied Mathematics and Mechanics, 2016, 37(8): 880-888.(in Chinese)
    [11] MEGAHED A M. Improvement of heat transfer mechanism through a Maxwell fluid flow over a stretching sheet embedded in a porous medium and convectively heated[J]. Mathematics and Computers in Simulation, 2021, 187: 97-109. doi: 10.1016/j.matcom.2021.02.018
    [12] CATTANEO C. Sulla conduzione del calore[J]. Atti del Seminario Matematico e Fisico Dell’Universita di Modena e Reggio Emilia, 1948, 3: 83-101.
    [13] CHRISTOV C I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite-speed heat conduction[J]. Mechanics Research Communications, 2009, 36(4): 481-486. doi: 10.1016/j.mechrescom.2008.11.003
    [14] HAYAT T, AYUB T, MUHAMMAD T. Flow of variable thermal conductivity Oldroyd-B fluid with generalized Fourier’s and Fick’s laws[J]. Journal of Molecular Liquilds, 2017, 234: 9-17. doi: 10.1016/j.molliq.2017.03.053
    [15] SHEHZAD S A, ABBASI F M, HAYAT T, et al. Cattaneo-Christov heat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection[J]. Journal of Molecular Liquilds, 2016, 224: 274-278. doi: 10.1016/j.molliq.2016.09.109
    [16] ZHANG Y, BAI Y, YUAN B, et al. Flow and heat transfer analysis of a Maxwell-power-law fluid film with forced thermal Marangoni convective[J]. Internatinal Communications in Heat and Mass Transfer, 2021, 121: 105062. doi: 10.1016/j.icheatmasstransfer.2020.105062
    [17] BAI Y, WANG Q, ZHANG Y. Unsteady stagnation-point flow of upper-convected Oldroyd-B nanofluid with variable thermal conductivity and relaxation-retardation double-diffusion model[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2021, 31(11): 3373-3393.
    [18] LIAO S. Beyond perturbation: introduction to the homotopy analysis method[J]. Applied Mechanics Reviews, 2003, 57(5): B25-B26.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  267
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-12
  • 录用日期:  2021-07-12
  • 修回日期:  2021-09-26
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-03-08

目录

    /

    返回文章
    返回