[1] |
DINKELBACH W. On nonlinear fractional programming[J]. Management Science, 1967, 13(7): 492-498. doi: 10.1287/mnsc.13.7.492
|
[2] |
YANG X M, TEO K L, YANG X Q. Symmetric duality for a class of nonlinear fractional programming problems[J]. Journal of Mathematical Analysis and Applications, 2002, 271(1): 7-15. doi: 10.1016/S0022-247X(02)00042-2
|
[3] |
LONG X J, HUANG N J, LIU Z B. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs[J]. Journal of Industrial and Management Optimization, 2008, 4(2): 287-298. doi: 10.3934/jimo.2008.4.287
|
[4] |
SUN X K, CHAI Y, ZENG J. Farkas-type results for constrained fractional programming with DC functions[J]. Optimization Letters, 2014, 8: 2299-2313. doi: 10.1007/s11590-014-0737-7
|
[5] |
ZHOU Z A, CHEN W. Optimality conditions and duality of the set-valued fractional programming[J]. Pacific Journal of Optimization, 2019, 15(4): 639-651.
|
[6] |
LIU J C, YOKOYAMA K. $ \varepsilon $ -optimality and duality for multiobjective fractional programming[J]. Computers and Mathematics With Applications, 1999, 37(8): 119-128. doi: 10.1016/S0898-1221(99)00105-4
|
[7] |
GUPTA P, SHIRAISHI S, YOKOYAMA K. $ \varepsilon $ -optimality without constraint qualification for multiobjective fractional problem[J]. Journal of Nonlinear and Convex Analysis, 2005, 6(2): 347-357.
|
[8] |
VERMA R U. Weak $ \varepsilon $ -efficiency conditions for multiobjective fractional programming[J]. Applied Mathematics and Computation, 2013, 219(12): 6819-6827. doi: 10.1016/j.amc.2012.12.087
|
[9] |
KIM M H, KIM G S, LEE G M. On $ \varepsilon $ -optimality conditions for multiobjective fractional optimization problems[J]. Fixed Point Theory and Applications, 2011, 2011: 6. doi: 10.1186/1687-1812-2011-6
|
[10] |
LI G Y, JEYAKUMAR V, LEE G M. Robust conjugate duality for convex optimization under uncertainty with application to data classification[J]. Nonlinear Analysis, 2011, 74(6): 2327-2341. doi: 10.1016/j.na.2010.11.036
|
[11] |
SUN X K, LI X B, LONG X J, et al. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization[J]. Pacific Journal of Optimization, 2017, 13(4): 621-643.
|
[12] |
FAKHAR M, MAHYARINIA M, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research, 2018, 265(1): 39-48. doi: 10.1016/j.ejor.2017.08.003
|
[13] |
SUN X K, TEO K L, ZENG J, et al. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty[J]. Optimization, 2020, 69(9): 2109-2129. doi: 10.1080/02331934.2020.1763990
|
[14] |
赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019, 40(6): 694-700. (ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700.(in Chinese)ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics, 2019, 40(6): 694-700. (in Chinese))
|
[15] |
LEE J H, LEE G M. On $ \varepsilon $ -solutions for robust fractional optimization problems[J]. Journal of Inequalities and Applications, 2014, 2014: 501. doi: 10.1186/1029-242X-2014-501
|
[16] |
ZENG J, XU P, FU H Y. On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data[J]. Journal of Inequalities and Applications, 2019, 2019: 45. doi: 10.1186/s13660-019-1997-7
|
[17] |
BEN-TAL A, GHAOUI L E, NEMIROVSKI A. Robust Optimization[M]. Princeton: Princeton University Press, 2009.
|
[18] |
CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons Inc, 1983.
|
[19] |
ANTCZAK T. Parametric approach for approximate efficiency of robust multiobjective fractional programming problems[J]. Mathematical Methods in Applied Sciences, 2021, 44(14): 11211-11230. doi: 10.1002/mma.7482
|
[20] |
LONG X J, XIAO Y B, HUANG N J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems[J]. Journal of the Operations Research Society of China, 2018, 6(2): 289-299. doi: 10.1007/s40305-017-0167-1
|
[21] |
刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. (LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601.(in Chinese)LIU Juan, LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. (in Chinese)
|