留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XFEM和GA-BP神经网络的裂纹智能识别研究

毛晓敏 张慧华 纪晓磊 韩尚宇

毛晓敏,张慧华,纪晓磊,韩尚宇. 基于XFEM和GA-BP神经网络的裂纹智能识别研究 [J]. 应用数学和力学,2022,43(11):1268-1280 doi: 10.21656/1000-0887.420250
引用本文: 毛晓敏,张慧华,纪晓磊,韩尚宇. 基于XFEM和GA-BP神经网络的裂纹智能识别研究 [J]. 应用数学和力学,2022,43(11):1268-1280 doi: 10.21656/1000-0887.420250
MAO Xiaomin, ZHANG Huihua, JI Xiaolei, HAN Shangyu. Intelligent Crack Recognition Based on XFEM and GA-BP Neural Networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250
Citation: MAO Xiaomin, ZHANG Huihua, JI Xiaolei, HAN Shangyu. Intelligent Crack Recognition Based on XFEM and GA-BP Neural Networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250

基于XFEM和GA-BP神经网络的裂纹智能识别研究

doi: 10.21656/1000-0887.420250
基金项目: 国家自然科学基金(12062015;52068054);江西省自然科学基金(20192BAB202001;20212BAB211016)
详细信息
    作者简介:

    毛晓敏(1996—),女,硕士生(E-mail:3194197173@qq.com

    张慧华(1982—),男,教授,博士(通讯作者. E-mail:hhzhang@nchu.edu.cn

  • 中图分类号: O241.82; TP183

Intelligent Crack Recognition Based on XFEM and GA-BP Neural Networks

  • 摘要:

    基于扩展有限元法(XFEM)和经遗传算法(GA)优化的误差反向传播多层前馈(BP)神经网络(GA-BP)算法,建立了识别结构中裂纹的反演分析模型。模型通过XFEM正向分析获得的测点位移数据训练GA-BP神经网络,并在此基础上利用该网络进行裂纹反向识别。通过两个典型算例对模型的可行性和精度进行了验证,并探讨了网格密度、测点布置、输入数据噪声等对网络识别精度的影响。结果表明,该文的方法可反演线弹性断裂力学重点关注的直线裂纹的几何信息且具有较好的容噪性能,此外,GA-BP神经网络的预测精度较传统BP神经网络普遍更高。

  • 图  1  含裂纹结构及测点示意图

    Figure  1.  Schematic diagram of the structure with cracks and the measuring points

    图  2  GA优化BP神经网络的流程图

    Figure  2.  The flow chart of the BP neural network optimized by GA

    图  3  BP神经网络的结构模型

    Figure  3.  The structure of the BP neural network

    图  4  XFEM与GA-BP神经网络算法开展裂纹识别的流程图

    Figure  4.  The flow chart of crack identification based on the XFEM and the GA-BP neural network algorithm

    图  5  单向拉伸作用下含单边裂纹的矩形板

    Figure  5.  A rectangular plate with an edge crack under uniaxial tension

    图  6  XFEM网格:(a) 120个单元; (b) 435个单元; (c) 780个单元; (d) 1 540个单元

    Figure  6.  XFEM meshes: (a) 120 elements; (b) 435 elements; (c) 780 elements; (d) 1 540 elements

    图  7  测点布置方案:(a) 方案1,14个测点; (b) 方案2,12个测点; (c) 方案3,10个测点; (d) 方案4,8个测点;(e) 方案5,6个测点; (f) 方案6,4个测点

    Figure  7.  Layouts of measuring points: (a) scheme 1, 14 points; (b) scheme 2, 12 points; (c) scheme 3, 10 points; (d) scheme 4, 8 points; (e) scheme 5, 6 points; (f) scheme 6, 4 points

    图  8  不同噪声下XA预测的相对误差绝对值

    Figure  8.  Absolute values of relative errors of predicted XA under various noises

    图  9  单向拉伸荷载作用下含双斜裂纹的方板

    Figure  9.  A square plate with two inclined cracks under uniaxial tension

    图  10  XFEM网格和测点布置 (a=0.5 m)

    Figure  10.  The XFEM mesh and measuring points (a=0.5 m)

    图  11  不同噪声下,XAXBXCXD预测值的相对误差绝对值

    Figure  11.  Absolute values of relative errors of predicted XA, XB, XC and XD under different noises

    图  12  不同噪声下,YAYBYCYD预测值的相对误差绝对值

    Figure  12.  Absolute values of relative errors of predicted YA, YB, YC and YD under different noises

    表  1  不同网格下的$ {K_{\rm I}} $(单位:MPa·m1/2)

    Table  1.   $ {K_{\rm I}} $ for different meshes (unit: MPa·m1/2)

    XFEM solutionreference solution
    120 elements435 elements780 elements1540 elements
    2.5743
    (6.86%)
    2.6801
    (3.03%)
    2.7209
    (1.55%)
    2.7224
    (1.50%)
    2.7639
    下载: 导出CSV

    表  2  测点坐标

    Table  2.   Coordinates of measuring points

    numberXYnumberXY
    10.00000.769281.30006.0000
    20.00001.538592.00005.2308
    30.00002.3077102.00004.4615
    40.00003.6923112.00003.6923
    50.00004.4615122.00002.3077
    60.00005.2308132.00001.5385
    70.70006.0000142.00000.7692
    下载: 导出CSV

    表  3  GA-BP神经网络对XA的训练输出结果

    Table  3.   Training results of the GA-BP neural network for XA

    crack length a/mtrue XAtraining XArelative error ek/%
    0.50.50000.50571.14
    0.60.60000.60040.07
    0.70.70000.6991−0.13
    0.80.80000.7996−0.05
    0.90.90000.90030.03
    1.01.00001.00040.04
    1.11.10001.0999−0.01
    1.21.20001.1994−0.05
    1.31.30001.2999−0.01
    1.41.40001.40100.07
    下载: 导出CSV

    表  4  BP与GA-BP神经网络预测的XA

    Table  4.   Prediction of XA by BP and GA-BP neural networks

    layout scheme of
    measuring points
    number of
    measuring points
    number of hidden
    layer neurons
    true XABP prediction
    XA
    relative error
    ek/%
    GA-BP prediction
    XA
    relative error
    ek/%
    11441.50001.47561.631.49580.28
    21241.49680.211.48620.92
    31081.59776.511.49790.14
    4841.49110.591.48371.08
    5631.52101.401.49790.14
    6431.55183.451.46762.16
    下载: 导出CSV

    表  6  GA-BP神经网络对裂尖B坐标的训练值

    Table  6.   Training coordinates of crack tip B by the GA-BP neural network

    crack length a/mtrue XBtraining XBtrue YBtraining YB
    0.5000.87680.87691.67681.6806
    0.5280.88680.88731.68681.6913
    0.5560.89680.89531.69681.6974
    0.5850.90680.90841.70681.7109
    0.6130.91680.91701.71681.7218
    0.6410.92680.92571.72681.7299
    0.6700.93680.93801.73681.7406
    0.6980.94680.94621.74681.7449
    下载: 导出CSV

    表  7  GA-BP神经网络对裂尖C坐标的训练值

    Table  7.   Training coordinates of crack tip C by the GA-BP neural network

    crack length a/mtrue XCtraining XCtrue YCtraining YC
    0.5001.12321.12360.67680.6744
    0.5281.11321.11280.68680.6841
    0.5561.10321.10460.69680.6941
    0.5851.09321.09100.70680.7027
    0.6131.08321.08260.71680.7121
    0.6411.07321.07390.72680.7225
    0.6701.06321.06200.73680.7329
    0.6981.05321.05430.74680.7438
    下载: 导出CSV

    表  5  GA-BP神经网络对裂尖A坐标的训练值

    Table  5.   Training coordinates of crack tip A by the GA-BP neural network

    crack length a/mtrue XAtraining XAtrue YAtraining YA
    0.5000.52320.52381.32321.3194
    0.5280.51320.51271.31321.3088
    0.5560.50320.50441.30321.3031
    0.5850.49320.49061.29321.2893
    0.6130.48320.48231.28321.2783
    0.6410.47320.47381.27321.2703
    0.6700.46320.46221.26321.2594
    0.6980.45320.45491.25321.2556
    下载: 导出CSV

    表  8  GA-BP神经网络对裂尖D坐标的训练值

    Table  8.   Training coordinates of crack tip D by the GA-BP neural network

    crack length a/mtrue XDtraining XDtrue YDtraining YD
    0.5001.47681.47480.32320.3258
    0.5281.48681.48720.31320.3160
    0.5561.49681.49620.30320.3049
    0.5851.50681.51130.29320.2971
    0.6131.51681.51920.28320.2879
    0.6411.52681.52720.27320.2772
    0.6701.53681.53770.26320.2671
    0.6981.54681.54330.25320.2553
    下载: 导出CSV

    表  9  BP与GA-BP神经网络对裂尖A、B的预测值

    Table  9.   Prediction of crack tips A and B by BP and GA-BP neural networks

    crack length a/mXArelative error ek/%YArelative error ek/%XBrelative error ek/%YBrelative error ek/%
    0.726true value0.44321.24320.95681.7568
    BP0.44650.741.24910.470.95580.111.75150.30
    GA-BP0.44350.071.24330.010.95640.041.75660.01
    0.755true value0.43321.23320.96681.7668
    BP0.44111.821.25341.640.96370.321.74821.05
    GA-BP0.43450.291.23360.030.96580.101.76630.03
    0.783true value0.42321.22320.97681.7768
    BP0.43502.791.25292.430.97290.401.74921.55
    GA-BP0.42640.771.22480.130.97390.301.77500.10
    下载: 导出CSV

    表  10  BP与GA-BP神经网络对裂尖C、D的预测值

    Table  10.   Prediction of crack tips C and D by BP and GA-BP neural networks

    crack length a/mXCrelative error ek/%YCrelative error ek/%XDrelative error ek/%YDrelative error ek/%
    0.726true value1.04320.75681.55680.2432
    BP1.04540.220.75410.361.54920.490.24460.56
    GA-BP1.04360.040.75670.021.55630.030.24330.05
    0.755true value1.03320.76681.56680.2332
    BP1.03900.560.76560.161.54951.110.23061.10
    GA-BP1.03420.100.76640.051.56580.060.23360.17
    0.783true value1.02320.77681.57680.2232
    BP1.03180.840.77530.191.54921.750.21961.59
    GA-BP1.02620.290.77520.211.57390.190.22480.72
    下载: 导出CSV
  • [1] KWAN A K H, MA F J. Crack width analysis of reinforced concrete under direct tension by finite element method and crack queuing algorithm[J]. Engineering Structures, 2016, 126(1): 618-627.
    [2] XIE G Z, ZHOU F L, LI H, et al. A family of non-conforming crack front elements of quadrilateral and triangular types for 3D crack problems using the boundary element method[J]. Frontiers of Mechanical Engineering, 2019, 14(3): 332-341. doi: 10.1007/s11465-019-0540-3
    [3] 李录贤, 王铁军. 扩展有限元法(XFEM)及其应用[J]. 力学进展, 2005, 35(1): 5-20 doi: 10.3321/j.issn:1000-0992.2005.01.002

    LI Luxian, WANG Tiejun. The extended finite element method and its application: a review[J]. Advances in Mechanics, 2005, 35(1): 5-20.(in Chinese) doi: 10.3321/j.issn:1000-0992.2005.01.002
    [4] 王振, 余天堂. 模拟三维裂纹问题的自适应多尺度扩展有限元法[J]. 工程力学, 2016, 33(1): 32-38 doi: 10.6052/j.issn.1000-4750.2014.06.0483

    WANG Zhen, YU Tiantang. Adaptive multiscale extended finite element method for simulating three-dimensional crack problems[J]. Engineering Mechanics, 2016, 33(1): 32-38.(in Chinese) doi: 10.6052/j.issn.1000-4750.2014.06.0483
    [5] XIAO G Z, WEN L F, TIAN R. Arbitrary 3D crack propagation with improved XFEM: accurate and efficient crack geometries[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 377: 113659. doi: 10.1016/j.cma.2020.113659
    [6] LI Y M, XIA Y D, XIE D L, et al. Application of artificial bee colony algorithm for particle size distribution measurement of suspended sediment based on focused ultrasonic sensor[J]. Transactions of the Institute of Measurement and Control, 2021, 43(7): 1680-1690. doi: 10.1177/0142331221989115
    [7] ALHADDAD W, HALABI Y, MEREE H, et al. Optimum design method for simplified model of outrigger and ladder systems in tall buildings using genetic algorithm[J]. Structures, 2020, 28: 2467-2487. doi: 10.1016/j.istruc.2020.09.066
    [8] MOLDOVANU S, OBREJA C-D, BISWAS K C, et al. Towards accurate diagnosis of skin lesions using feedforward back propagation neural networks[J]. Diagnostics (Basel), 2021, 11(6): 936. doi: 10.3390/diagnostics11060936
    [9] 王佳萍, 杜成斌, 王翔, 等. 基于XFEM和改进人工蜂群算法的结构内部缺陷反演[J]. 工程力学, 2019, 36(9): 25-31

    WANG Jiaping, DU Chengbin, WANG Xiang, et al. Inverse analysis of internal defects in structures using extended finite element method and improved artificial bee colony algorithm[J]. Engineering Mechanics, 2019, 36(9): 25-31.(in Chinese)
    [10] DU C, ZHAO W, JIANG S, et al. Dynamic XFEM-based detection of multiple flaws using an improved artificial bee colony algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 365: 112995. doi: 10.1016/j.cma.2020.112995
    [11] RABINOVICH D, GIVOLI D, VIGDERGAUZ S. XFEM-based crack detection scheme using a genetic algorithm[J]. International Journal for Numerical Methods in Engineering, 2007, 71(9): 1051-1080. doi: 10.1002/nme.1975
    [12] CHATZI E N, HIRIYUR B, WAISMAN H, et al. Experimental application and enhancement of the XFEM-GA algorithm for the detection of flaws in structures[J]. Computers and Structures, 2010, 89(7): 556-570.
    [13] 王佳萍, 杜成斌, 江守燕. 扩展有限元与遗传算法相结合的结构缺陷反演分析[J]. 力学与实践, 2017, 39(6): 591-596 doi: 10.6052/1000-0879-17-176

    WANG Jiaping, DU Chengbin, JIANG Shouyan. Analysis of structural defect inversion based on extended finite element and genetic algorithm[J]. Mechanics in Engineering, 2017, 39(6): 591-596.(in Chinese) doi: 10.6052/1000-0879-17-176
    [14] 孟建军, 孟高阳, 李德仓. 基于SA-GA混合算法的动车组车辆轮重分配优化[J]. 应用数学和力学, 2021, 42(4): 363-372

    MENG Jianjun, MENG Gaoyang, LI Decang. Optimization of wheel weight distribution for EMU vehicles based on the SA-GA hybrid algorithm[J]. Applied Mathematics and Mechanics, 2021, 42(4): 363-372.(in Chinese)
    [15] WANG H Y, ZHANG Z X, LIU L M. Prediction and fitting of weld morphology of Al alloy-CFRP welding-rivet hybrid bonding joint based on GA-BP neural network[J]. Journal of Manufacturing Processes, 2021, 63: 109-120. doi: 10.1016/j.jmapro.2020.04.010
    [16] WANG Z W, FEI Y, YE P X, et al. Crack characterization in ferromagnetic steels by pulsed eddy current technique based on GA-BP neural network model[J]. Journal of Magnetism and Magnetic Materials, 2020, 500: 166412. doi: 10.1016/j.jmmm.2020.166412
    [17] 江守燕, 杜成斌. 基于扩展有限元的结构内部缺陷(夹杂)的反演分析模型[J]. 力学学报, 2015, 47(6): 1037-1045 doi: 10.6052/0459-1879-15-134

    JIANG Shouyan, DU Chengbin. Numerical model for identification of internal defect or inclusion based on extended finite elememt methods[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6): 1037-1045.(in Chinese) doi: 10.6052/0459-1879-15-134
    [18] 张慧华. 典型不连续固体力学问题的数值求解[D]. 博士学位论文. 西安: 西安交通大学, 2009.

    ZHANG Huihua. Numerical solutions to typical discontinuous problems in solid mechanics[D]. PhD Thesis. Xi’an: Xi’an Jiaotong University, 2009. (in Chinese)
    [19] 茹忠亮, 朱传锐, 张友良, 等. 断裂问题的扩展有限元法研究[J]. 岩土力学, 2011, 32(7): 2171-2176 doi: 10.3969/j.issn.1000-7598.2011.07.042

    RU Zhongliang, ZHU Chuanrui, ZHANG Youliang, et al. Study of fracture problem with extended finite element method[J]. Rock and Soil Mechanics, 2011, 32(7): 2171-2176.(in Chinese) doi: 10.3969/j.issn.1000-7598.2011.07.042
    [20] 冉雨晴, 吴玮, 狄鑫. 基于遗传算法优化BP神经网络的管网漏失定位模型研究[J]. 水电能源科学, 2021, 39(5): 123-126

    RAN Yuqing, WU Wei, DI Xin. Study on leakage location model of water supply network based on bp neural network optimized by genetic algorithm[J]. Water Resources and Power, 2021, 39(5): 123-126.(in Chinese)
    [21] HOLLAND J H. Adaptation in Natural and Artificial Systems: an Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge : The MIT Press, 1992.
    [22] WANG X, AN S, XU Y Q, et al. A back propagation neural network model optimized by mind evolutionary algorithm for estimating Cd, Cr, and Pb concentrations in soils using vis-NIR diffuse reflectance spectroscopy[J]. Applied Sciences, 2020, 10(1): 51.
    [23] 中国航空研究院. 应力强度因子手册[M]. 增订版. 北京: 科学出版社, 1993.

    Chinese Aeronautical Establishment. Stress Intensity Factor Manual[M]. revised and enlarged ed. Beijing: Science Press, 1993. (in Chinese)
  • 加载中
图(12) / 表(10)
计量
  • 文章访问数:  652
  • HTML全文浏览量:  374
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-25
  • 录用日期:  2022-02-01
  • 修回日期:  2021-12-20
  • 网络出版日期:  2022-10-15
  • 刊出日期:  2022-11-30

目录

    /

    返回文章
    返回