留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟

庄昕 刘付军 孙艳萍 王惠玲

庄昕,刘付军,孙艳萍,王惠玲. 非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟 [J]. 应用数学和力学,2022,43(12):1380-1391 doi: 10.21656/1000-0887.430127
引用本文: 庄昕,刘付军,孙艳萍,王惠玲. 非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟 [J]. 应用数学和力学,2022,43(12):1380-1391 doi: 10.21656/1000-0887.430127
ZHUANG Xin, LIU Fujun, SUN Yanping, WANG Huiling. High Accuracy Numerical Simulation of Non-Isothermal Viscoelastic Polymer Fluid Past a Cylinder[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1380-1391. doi: 10.21656/1000-0887.430127
Citation: ZHUANG Xin, LIU Fujun, SUN Yanping, WANG Huiling. High Accuracy Numerical Simulation of Non-Isothermal Viscoelastic Polymer Fluid Past a Cylinder[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1380-1391. doi: 10.21656/1000-0887.430127

非等温黏弹性聚合物流体圆柱绕流的高精度数值模拟

doi: 10.21656/1000-0887.430127
基金项目: 国家自然科学基金(11901162);河南省高等学校重点科研项目计划基金(21A110006)
详细信息
    作者简介:

    庄昕(1983—),女,讲师,博士(通讯作者. E-mail: zhuangxin1983@126.com)

  • 中图分类号: O242.1; O373

High Accuracy Numerical Simulation of Non-Isothermal Viscoelastic Polymer Fluid Past a Cylinder

  • 摘要:

    采用同位网格有限体积(coupled and linked equations algorithm revised,CLEAR)方法求解黏性和XPP (eXtended Pom-Pom)黏弹性流动的控制方程,基于延时修正方法构造了动量和本构方程对流项的高精度AVLsmart格式。首先,为了验证该文方法的有效性,对不同Reynolds数下不可压黏性流体圆柱绕流问题进行了模拟。随后,对等温及非等温不可压XPP黏弹性流体圆柱绕流问题进行了有效模拟,给出了速度矢量、应力分量、拉升量以及温度的分布规律,分析了We数对水平速度、法向应力及拉升量的影响。该文研究成果能为精确预测复杂型腔纤维增强黏弹性聚合物熔体动态充填过程提供理论基础。

  • 图  1  Newton流体圆柱绕流示意图

    Figure  1.  Schematic diagram of the Newtonian flow past a cylinder

    图  2  不同Re下,圆柱附近的压力(上)和流线分布(下)

    Figure  2.  Distributions of pressure (top) and streamlines (bottom) near the cylinder for different Re numbers

    图  3  不同Re下,圆柱绕流的速度u(上)和速度v(下)分布

    注 为了解释图中的颜色,读者可以参考本文的电子网页版本,后同。

    Figure  3.  Distributions of velocity u (top) and velocity v (bottom) near the cylinder for different Re numbers

    图  4  t=100时,不同 Reynolds数下圆柱绕流的流线图:(a) Re=60;(b) Re=80;(c) Re=100;(d) Re=200

    Figure  4.  Streamlines of the flow near the cylinder at t=100 for different Re numbers: (a) Re=60; (b) Re=80; (c) Re=100; (d) Re=200

    图  5  Re=100时,半个周期内圆柱附近流线图:(a) t=T/12;(b) t=2T/12;(c) t=3T/12;(d) t=4T/12;(e) t=5T/12;(f) t=6T/12

    Figure  5.  Streamlines of the flow near the cylinder in a half cycle for Re=100: (a) t=T/12; (b) t=2T/12; (c) t=3T/12; (d) t=4T/12; (e) t=5T/12; (f) t=6T/12

    图  6  XPP流体圆柱绕流示意图

    Figure  6.  Schematic diagram of the XPP flow past a cylinder

    图  7  We=1,Re=1时,速度、应力分量及拉升量的分布:(a) u;(b) v;(c) τxx;(d) τyy;(e) τxy;(f) λ

    Figure  7.  Distributions of velocity vectors, stress components and stretches at We=1, Re=1: (a) u; (b) v; (c) τxx; (d) τyy; (e) τxy; (f) λ

    图  8  y=2时,We对水平速度、拉升量及法向应力的影响:(a) u;(b) λ;(c) τxx;(d) τyy

    Figure  8.  Effects of We on horizontal velocities, stretches and normal stresses at y=2: (a) u; (b) λ; (c) τxx; (d) τyy

    图  9  不同Pe下的温度分布:(a) Pe=100;(b) Pe=1 000;(c) Pe=10 000;(d) Pe=100 000

    Figure  9.  Distributions of temperatures at different Pe numbers: (a) Pe=100; (b) Pe=1 000; (c) Pe=10 000; (d) Pe=100 000

    表  1  方程(18)中函数和常数的表达式

    Table  1.   Definition of functions and constants in eq. (18)

    equation$ \varPhi $$ \theta $$ \delta $$ {S_\varPhi } $
    continuity1100
    u-momentum$ u $$ Re $1$ - \dfrac{{\partial p}}{{\partial x}} + \left( {\dfrac{{\partial {\tau _{xx}}}}{{\partial x}} + \dfrac{{\partial {\tau _{xy}}}}{{\partial y}}} \right) + (\beta - 1)\left( {\dfrac{{{\partial ^2}u}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}u}}{{\partial {y^2}}}} \right) $
    v-momentum$ v $$ Re $1$ - \dfrac{{\partial p}}{{\partial y}} + \left( {\dfrac{{\partial {\tau _{xy}}}}{{\partial x}} + \dfrac{{\partial {\tau _{yy}}}}{{\partial y}}} \right) + (\beta - 1)\left( {\dfrac{{{\partial ^2}v}}{{\partial {x^2}}} + \dfrac{{{\partial ^2}v}}{{\partial {y^2}}}} \right) $
    $ {\tau _{xx}} $ normal stress$ {\tau _{xx}} $$ We $0$ {S_{{\tau _{xx}}}} $
    $ {\tau _{xy}} $ shear stress$ {\tau _{xy}} $$ We $0$ {S_{{\tau _{xy}}}} $
    $ {\tau _{yy}} $ normal stress$ {\tau _{yy}} $$ We $0$ {S_{{\tau _{yy}}}} $
    energy$ T $$ Pe $1${S_{{T} } }$
    下载: 导出CSV

    表  2  不同Re下的曳力系数

    Table  2.   Drag coefficients at different Re numbers

    referencedrag coefficient CD
    Re=10Re=20Re=40
    ref. [28]3.072.181.713
    ref. [29]2.852.061.564
    ref. [30]3.182.251.675
    present work3.112.221.708
    下载: 导出CSV

    表  3  LDPE熔体在$ {T_{\text{r}}}{\text{ = 443}} $时的XPP和Arrhenius流变参数[9]

    Table  3.   Rheology parameters for LDPE melt for the XPP and Arrhenius models at $ {T_{\text{r}}}{\text{ = 443}} $[9]

    parameters${\lambda _{ {\text{0b} } } }({T_{\text{r} } })/{\rm{s }}$$\lambda {}_{ {\text{0s} } }({T_{\text{r} } })/{\rm{s}}$$ q $$ \alpha $${\eta _{\text{s} } }/({\rm{Pa \cdot s}})$${\eta _0}/({\rm{Pa \cdot s} })$$ {E_0}/({\text{J}} \cdot {\text{mo}}{{\text{l}}^{ - 1}}) $$ R{\kern 1pt} /({\text{J}} \cdot {\text{mo}}{{\text{l}}^{ - 1}} \cdot {{\text{K}}^{ - 1}}{\text{)}} $
    value1.741 50.580 520.152004 60048 2008.314
    下载: 导出CSV
  • [1] 杨旭, 梁英杰, 孙洪广, 等. 空间分数阶非Newton流体本构及圆管流动规律研究[J]. 应用数学和力学, 2018, 39(11): 1213-1226

    YANG Xu, LIANG Yingjie, SUN Hongguang, et al. A study on the constitutive relation and the flow of spatial fractional non-Newtonian fluid in circular pipes[J]. Applied Mathematics and Mechanics, 2018, 39(11): 1213-1226.(in Chinese)
    [2] 吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2002.

    WU Qiye, WU Jing’an. Polymer Rheology[M]. Beijing: Higher Education Press, 2002. (in Chinese)
    [3] 白羽, 方慧灵, 张艳. Oldroyd-B流体绕拉伸楔形体的非稳态滑移流动与传热分析[J]. 应用数学和力学, 2022, 43(3): 272-280

    BAI Yu, FANG Huiling, ZHANG Yan. Unsteady slip flow and heat transfer analysis of Oldroyd-B fluid over the stretching wedge[J]. Applied Mathematics and Mechanics, 2022, 43(3): 272-280.(in Chinese)
    [4] LIELENS G, KEUNINGS R, LEGAT V. The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 87(2/3): 179-196.
    [5] HYON Y K, DU Q, LIU C. An enhanced macroscopic closure approximation to the micro-macro FENE models for polymeric materials[J]. Multiscale Modeling Simulation, 2008, 7(2): 978-1002. doi: 10.1137/070708287
    [6] PHAN-THIEN N, TANNER R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(4): 353-365. doi: 10.1016/0377-0257(77)80021-9
    [7] MCLEISH T C B, LARSON R G. Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer[J]. Journal of Rheology, 1998, 42(1): 81-110. doi: 10.1122/1.550933
    [8] VERBEETEN W M H, PETERS G W M, BAAIJENS F T P. Differential constitutive equations for polymer melts: the extended Pom-Pom model[J]. Journal of Rheology, 2001, 45(4): 823-843. doi: 10.1122/1.1380426
    [9] VERBEETEN W M H, PETERS G W M, BAAIJENS F P T. Viscoelastic analysis of complex polymer melt flows using the eXtended Pom-Pom model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 108(1/3): 301-326.
    [10] VERBEETEN W M H, PETERS G W M, BAAIJENS F P T. Numerical simulations of the planar contraction flow for a polyethylene melt using the XPP model[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 117(2/3): 73-84.
    [11] TAMADDON-JAHROMI H R, WEBSTER M F. Transient behaviour of branched polymer melts through planar abrupt and rounded contractions using Pom-Pom models[J]. Mechanics of Time-Dependent Materials, 2011, 15: 181-211. doi: 10.1007/s11043-010-9130-9
    [12] AGUAYOJP, PHILLIPSPM, PHILLIPSTN, et al. Thenumerical prediction of planar viscoelastic flows using the Pom-Pom model and high-order finite volumeschemes[J]. Journal of Computational Physics, 2007, 220(2): 586-611. doi: 10.1016/j.jcp.2006.05.039
    [13] YANG B X, OUYANG J, LI Q, et al. Modeling and simulation of the viscoelastic fluid mold filling process by level set method[J]. Journal of Non-Newtonian Fluid Mechanics, 2010, 165(19/20): 1275-1293.
    [14] LI X J, HE J H. Variational multi-scale finite element method for the two-phase flow of polymer melt filling process[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2020, 30(3): 1407-1426.
    [15] OISHI C M, MARTINS F P, TOME M F, et al. Numerical solution of the eXtended Pom-Pom model for viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2011, 166(3/4): 165-179.
    [16] 曹伟, 王蕊, 申长雨. 塑料熔体在注塑模中的三维流动模拟[J]. 化工学报, 2004, 55(9): 1493-1498 doi: 10.3321/j.issn:0438-1157.2004.09.028

    CAO Wei, WANG Rui, SHEN Changyu. Three dimensional flow simulation of plastic melt in injection mold[J]. CIESC Journal, 2004, 55(9): 1493-1498.(in Chinese) doi: 10.3321/j.issn:0438-1157.2004.09.028
    [17] 周文, 欧阳洁, 杨斌鑫, 等. 三维非等温非牛顿流体充模过程的建模与模拟[J]. 化工学报, 2011, 62(3): 618-627

    ZHOU Wen, OUYANG Jie, YANG Binxin, et al. Modeling and simulation of 3D non-isothermal non-Newtonian fluid filling process[J]. CIESC Journal, 2011, 62(3): 618-627.(in Chinese)
    [18] GAO P Y, ZHAO Z T, YANG Y. The numerical modeling and study of gas entrapment phenomenon in non-isothermal polymer filling process[J]. Journal of Non-Newtonian Fluid Mechanics, 2021, 294: 104575. doi: 10.1016/j.jnnfm.2021.104575
    [19] CROCHET M J, PILATE G. Plane flow of a fluid of second grade through a contraction[J]. Journal of Non-Newtonian Fluid Mechanics, 1976, 1(3): 247-258. doi: 10.1016/0377-0257(76)80023-7
    [20] PERERA M G N, WALTERS K. Long-range memory effects in flows involving abrupt changes in geometry, part Ⅰ: flows associated with L-shaped and T-shaped geometries[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 2(1): 49-81. doi: 10.1016/0377-0257(77)80032-3
    [21] 陶文铨. 数值传热学[M]. 2版. 西安: 西安交通大学出版社, 2001.

    TAO Wenquan. Numerical Heat Transfer[M]. 2nd ed. Xi’an: Xi’an Jiaotong University Press, 2001.(in Chinese)
    [22] HABLA F, TAN M W, HABLBERGER J, et al. Numerical simulation of the viscoelastic flow in a three-dimensional lid-driven cavity using the log-conformation reformulation in OpenFOAM[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 212: 47-62. doi: 10.1016/j.jnnfm.2014.08.005
    [23] PIMENTA F, ALVES M A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 239: 85-104. doi: 10.1016/j.jnnfm.2016.12.002
    [24] ZHOU W, OUYANG J, WANG X D, et al. Numerical simulation of viscoelastic fluid flows using a robust FVM framework on triangular grid[J]. Journal of Non-Newtonian Fluid Mechanics, 2016, 236: 18-34. doi: 10.1016/j.jnnfm.2016.08.003
    [25] ZHUANG X, OUYANG J, LI Y G, et al. A three-dimensional thermal model for viscoelastic polymer melt packing process in injection molding[J]. Applied Thermal Engineering, 2018, 128: 1391-1403. doi: 10.1016/j.applthermaleng.2017.09.124
    [26] TAO W Q, QU Z G, HE Y L. A novel segregated algorithm for incompressible fluid flow and heat transfer problems-CLEAR (coupled and linked equations algorithm revised) part Ⅰ: mathematical formulation and solution procedure[J]. Numerical Heat Transfer (Part B): Fundamentals, 2004, 45(1): 1-17.
    [27] GAO P Y, OUYANG J, DAI P F, et al. A coupled continuous and discontinuous finite element method for the incompressible flows[J]. International Journal for Numerical Methods in Fluids, 2017, 84(8): 477-493. doi: 10.1002/fld.4358
    [28] DING H, SHU C, YEO K S, et al. Simulation of incompressible viscous flow past a circular cylinder by hybrid FD scheme and meshless least squarebased finite difference method[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(9/11): 727-744.
    [29] NITHIARASU P, ZIENKIEWICZ O C. Analysis of an explicit and matrix free fractional stepmethod for incompressible flows[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41/43): 5537-5551.
    [30] TUANN S Y, OLSON M D. Numerical studies of the flow around a circular cylinder by a finite element method[J]. Computers and Fluids, 1978, 6(4): 219-240. doi: 10.1016/0045-7930(78)90015-4
    [31] 仇轶, 由长福, 祁海鹰, 等. 用无网格法求解不同Re下圆柱绕流问题[J]. 清华大学学报(自然科学版), 2005, 45(2): 220-223 doi: 10.3321/j.issn:1000-0054.2005.02.021

    QIU Yi, YOU Changfu, QI Haiying, et al. Numerical simulation of flow around a cylinder for different Re using a meshless method[J]. Journal Tsinghua University (Science and Technology), 2005, 45(2): 220-223.(in Chinese) doi: 10.3321/j.issn:1000-0054.2005.02.021
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  257
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-05-03
  • 网络出版日期:  2022-11-28
  • 刊出日期:  2022-12-01

目录

    /

    返回文章
    返回