Blast Damage Simulation With the Discontinuous Galerkin Finite Element Method of Bond-Based Peridynamics
edited-by
edited-by
(Contributed by ZHANG Qing, M. AMM Editorial Board)-
摘要: 近场动力学是一种积分型非局部的连续介质力学理论,已广泛应用于固体材料和结构的非连续变形与破坏分析中,其数值求解方法主要采用无网格粒子类的显式动力学方法.近年来,弱形式近场动力学方程的非连续Galerkin有限元法得到发展,该方法不仅可以描述考察体的非局部作用效应和非连续变形特性,还可以充分利用有限单元法高效求解的特点,并继承了有限元法能直接施加局部边界条件的优点,可有效避免近场动力学的表面效应问题.该文阐述了键型近场动力学的非连续Galerkin有限元法的基本原理,导出了计算列式,给出了具体算法流程和细节,计算模拟了脆性玻璃板动态开裂分叉问题,并对爆炸冲击荷载作用下混凝土板的毁伤过程进行了计算分析.研究结果表明,该方法能够再现爆炸冲击荷载作用下结构的复杂破裂模式和毁伤破坏过程,且具有较高的计算效率,是模拟结构爆炸冲击毁伤效应的一种有效方法.
-
关键词:
- 近场动力学 /
- 非连续Galerkin有限单元法 /
- 爆炸毁伤 /
- 混凝土
Abstract: The peridynamics (PD) as an integral non-local continuum mechanics theory, is widely used in the discontinuous deformation and failure analyses of solid materials and structures, mainly with the explicit dynamic solution method for meshless particles. In recent years, the discontinuous Galerlin finite element method for weak-form peridynamic equations has been developed. This method can not only describe the non-local action effects and discontinuous deformation characteristics of the investigated body, but also make full use of the finite element method. It has the advantages of efficient solution, direct application of local boundary conditions, and effective avoidance of the surface effects in peridynamics. The basic principle of the discontinuous Galerkin finite element method of bond-based peridynamics was expounded, the calculation formula was derived, the specific algorithm flowchart and details were given, and the dynamic cracking and bifurcation problems of brittle glass plates were simulated. The damage processes of concrete slabs under blast impact loads were calculated and analyzed. The research results show that, the proposed method can predict the complex rupture mode and the damage process of the structure under blast impact loads, with high computational efficiency, and makes an effective way to the simulation of the structural blast damage effects.-
Key words:
- peridynamics /
- discontinuous Galerkin FEM /
- explosive damage /
- concrete
edited-byedited-by1) (我刊编委章青来稿) -
表 1 计算时间对比
Table 1. The computation time comparison
Δx=1 mm Δx=0.5 mm Δx=0.25 mm present method 54 s 246 s 1 350 s conventional bond-based PD method 104 s 522 s 3 277 s -
[1] 胡嘉辉, 吴昊, 方秦. 近区爆炸作用下砌体填充墙损伤破坏与动态响应的数值模拟[J]. 振动与冲击, 2021, 40(9): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109002.htmHU Jiahui, WU Hao, FANG Qin. Numerical simulation of damage and dynamic response of masonryinfilled wall under near zone explosion[J]. Journal of Vibration and Shock, 2021, 40(9): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202109002.htm [2] 师燕超, 李忠献, 郝洪. 爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706018.htmSHI Yanchao, LI Zhongxian, HAO Hong. Numerical analysis of progressive collapse of reinforced concrete frame under blast loading[J]. Journal of PLA University of Science and Technology, 2007, 8(6): 652-658. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL200706018.htm [3] 顾鑫, 章青. 爆炸荷载作用下大坝破坏分析的数值模拟研究进展[J]. 河海大学学报(自然科学版), 2017, 45(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201701007.htmGU Xin, ZHANG Qing. Progress in numerical simulation of dam failure under blast loading[J]. Journal of Hohai University(Natural Sciences), 2017, 45(1): 45-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX201701007.htm [4] 宁建国, 王猛. 关于计算爆炸力学的进展与现状[J]. 力学与实践, 2012, 34(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201006.htmNING Jianguo, WANG Meng. Review on computational explosion mechanics[J]. Mechanics in Engineering, 2012, 34(1): 10-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXYS201201006.htm [5] RUWAN J, DAVID P T, NIMAL J P. Blast and residual capacity analysis of reinforced concrete framed buildings[J]. Engineering Structures, 2011, 33(12): 3483-3495. doi: 10.1016/j.engstruct.2011.07.011 [6] XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading[J]. Computers & Structures, 2006, 84(5/6): 431-438. [7] 朱劲松, 邢扬. 爆炸荷载作用下城市桥梁动态响应及其损伤过程分析[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(6): 510-519. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201506006.htmZHU Jingsong, XING Yang. Dynamic response and damage process analysis of urban bridge subjected to blast load. [J]. Journal of Tianjin University(Science and Technology), 2015, 48(6): 510-519. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201506006.htm [8] 辛春亮, 薛再清. TrueGrid和LS-DYNA动力学数值计算详解[M]. 北京: 机械工业出版社, 2019.XIN Chunliang, XUE Zaiqing. TrueGrid and LS-DYNA Dynamics Numerical Calculation Details[M]. Beijing: China Machine Press, 2019. (in Chinese) [9] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids. 2000, 48(1): 175-209. doi: 10.1016/S0022-5096(99)00029-0 [10] SILLING S A, EPTON M, WECKNER O. Peridynamic states and constitutive modeling[J]. Journal of Elasticity. 2007, 88(2): 151-184. doi: 10.1007/s10659-007-9125-1 [11] 黄丹, 章青, 乔丕忠, 等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4): 448-459. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htmHUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics(PD) method and its application[J]. Advances in Mechanics, 2010, 40(4): 448-459. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201004007.htm [12] 周保良, 李志远, 黄丹. 二维瞬态热传导的PDDO分析[J]. 应用数学和力学, 2022, 43(6): 660-668. doi: 10.21656/1000-0887.420150ZHOU Baoliang, LI Zhiyuan, HUANG Dan. PDDO analysis of 2D transient heat conduction problems[J]. Applied Mathematics and Mechanics, 2022, 43(6): 660-668. (in Chinese) doi: 10.21656/1000-0887.420150 [13] KILIC B, AGWAI A, MADENCI E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates[J]. Composite Structures, 2009, 90(2): 141-151. doi: 10.1016/j.compstruct.2009.02.015 [14] 章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟[J]. 力学学报, 2016, 48(1): 64-71. doi: 10.3969/j.issn.1006-6616.2016.01.006ZHANG Qing, GU Xin, YU Yangtian. Peridynamics simulation for dynamic response of granular materials under impact loading[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63. (in Chinese) doi: 10.3969/j.issn.1006-6616.2016.01.006 [15] 张尚元, 聂玉峰, 李义强. RBF-PU方法求解二维非局部扩散问题和近场动力学问题[J]. 应用数学和力学, 2022, 43(6): 608-618. doi: 10.21656/1000-0887.420295ZHANG Shangyuan, NIE Yufeng, LI Yiqiang. The RBF-PU method for solving 2D nonlocal diffusion and peridynamic equations[J]. Applied Mathematics and Mechanics, 2022, 43(6): 608-618. (in Chinese) doi: 10.21656/1000-0887.420295 [16] HAN F, LUBINEAU G, AZDOUD Y. Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure[J]. Journal of the Mechanics and Physics of Solids, 2016, 94: 453-472. doi: 10.1016/j.jmps.2016.05.017 [17] DU Q, ZHOU K. Mathematical analysis for the peridynamic nonlocal continuum theory[J]. ESAIM: Mathematical Modelling and Numerical Analysis, 2011, 45(2): 217-234. doi: 10.1051/m2an/2010040 [18] XU F F, GUNZBURGER M, BURKARDT J. A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 307: 117-143. doi: 10.1016/j.cma.2016.04.020 [19] AZDOUD Y. A hybrid local/non-local framework for the simulation of damage and fracture[D]. PhD Thesis. Thuwal: King Abdullah University of Science and Technology, 2014. [20] CHEN X, GUNZBURGER M. Continuous and discontinuous finite element methods for a peridynamics model of mechanics[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(9/12): 1237-1250. [21] AKSOY H G, SENOCAK E. Discontinuous Galerkin method based on peridynamic theory for linear elasticity[J]. International Journal for Numerical Methods in Engineering, 2011, 88(7): 673-692. doi: 10.1002/nme.3196 [22] REN B, WU C T, ASKARI E. A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic brittle failure analysis[J]. International Journal of Impact Engineering, 2017, 99: 14-25. doi: 10.1016/j.ijimpeng.2016.09.003 [23] REN B, WU C T, SELESON P, et al. A peridynamic failure analysis of fiber-reinforced composite laminates using finite element discontinuous Galerkin approximations[J]. International Journal of Fracture, 2018, 214(1): 49-68. doi: 10.1007/s10704-018-0317-4 [24] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014. [25] TIAN X C, DU Q. Nonconforming discontinuous Galerkin methods for nonlocal variational problems[J]. SIAM Journal on Numerical Analysis, 2015, 53(2): 762-781. doi: 10.1137/140978831 [26] HA D, BOBARU F. Studies of dynamic crack propagation and crack branching with peridynamics[J]. International Journal of Fracture, 2010, 162(1): 229-244. [27] WANG W, ZHANG D, LU F Y, et al. Experimental study on scaling the explosion resistance of a one-way square reinforced concrete slab under a close-in blast loading[J]. International Journal of Impact Engineering, 2012, 49: 158-164. [28] KINGERY C N, BULMASH G. Airblast parameters from TNT spherical air burst and hemispherical surface burst: ARBRL-TR-02555[R]. Maryland: Defence Technical Information Center, Ballistic Research Laboratory, Aberdeen Proving Ground, 1984.