留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器

郑佳璇 梁韵笛 菅永军

郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346
引用本文: 郑佳璇, 梁韵笛, 菅永军. 高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器[J]. 应用数学和力学, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346
ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic Micro Thrusters of Phan-Thien-Tanner (PTT) Fluid at High Zeta Potential[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346
Citation: ZHENG Jiaxuan, LIANG Yundi, JIAN Yongjun. Electroosmotic Micro Thrusters of Phan-Thien-Tanner (PTT) Fluid at High Zeta Potential[J]. Applied Mathematics and Mechanics, 2023, 44(10): 1213-1225. doi: 10.21656/1000-0887.430346

高zeta势下Phan-Thien-Tanner(PTT)流体的电渗微推进器

doi: 10.21656/1000-0887.430346
基金项目: 

国家自然科学基金项目 12262026

内蒙古自治区自然科学基金项目 2021MS01007

内蒙古自治区高校创新科研团队计划项目 NMGIRT2323

内蒙古自治区“草原英才”工程 12000-12102013

详细信息
    作者简介:

    郑佳璇(1992—),女,讲师,博士(E-mail: 31536015@mail.imu.edu.cn)

    梁韵笛(1996—),女,硕士生(E-mail: 31936003@mail.imu.edu.cn)

    通讯作者:

    菅永军(1974—),男,教授,博士生导师(通讯作者. E-mail: jianyj@imu.edu.cn)

  • 中图分类号: O357.1; O361.4

Electroosmotic Micro Thrusters of Phan-Thien-Tanner (PTT) Fluid at High Zeta Potential

  • 摘要: 在高的壁面zeta电势下, 考查了Phan-Thien-Tanner(PTT)黏弹性流体在平行板微通道中的电渗推进器问题. 在没有考虑Debye-Hückel线性近似的条件下, 求解了非线性Poisson-Boltzmann方程, 得到了高zeta电势下电势的解析解. 通过求解PTT流体满足的Cauchy动量方程, 获得了Navier滑移条件下微推进器速度的数值解. 进而通过数值积分得到了电渗微推进器的性能分布, 包括比冲、推力、效率和推力-功率比. 最后, 详细分析了黏弹性参数、壁面zeta电势、滑移系数和双电层厚度对速度分布及推进器性能的影响. 结果表明, 与Newton流体相比, PTT流体作为推进剂有利于推进器性能的提高, 比如, 流体速度随着黏弹性参数的增大而增大, 导致推进器性能也呈增大的趋势. 此外, 当前推进器比冲为800~1 000 ms时,推力可达0~250 μN, 效率为6%~12%, 推力-功率比为0~20 mN/W.
  • 图  1  平行板微管道中黏弹性流体的纯电渗流

    Figure  1.  The pure electroosmotic flow of the viscoelastic fluid in a parallel plate microchannel

    图  2  速度的数值解与Sarma等[29]速度的解析解对比

    Figure  2.  The current numerical velocity compared to the analytical velocity of Sarma et al. [29]

    图  3  对于不同的εDe2, 电渗微推进器的速度分布

    Figure  3.  The velocity distributions of the electroosmotic microthruster for different values of εDe2

    图  4  对于不同的εDe2值, 推进器性能随κ的变化情况

    Figure  4.  The thruster performance changes with κ for different values of εDe2

    图  5  在不同的zeta电势下, 电渗微推进器的速度分布

    Figure  5.  The velocity distributions of the electroosmotic microthruster for different zeta values

    图  6  在不同zeta电势下, 推进器性能随κ的变化情况

    Figure  6.  The thruster performance changes with κ for different zeta values

    图  7  当滑移系数knl取不同值时, 电渗微推进器的速度分布

    Figure  7.  The velocity distributions of the electroosmotic microthruster for different slip coefficients

    图  8  当滑移系数knl取不同值时, 推进器的性能随κ的变化图象

    Figure  8.  The thruster performance changes with κ for different slip coefficients

  • [1] SMITH R S, HADAEGH F Y. Control of deep-space formation-flying spacecraft; relative sensing and switched information[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(1): 106-114. doi: 10.2514/1.6165
    [2] 徐晓辉. 深空探测中的微型推进器技术[J]. 机电产品开发与创新, 2007, 20(6): 29-31. https://www.cnki.com.cn/Article/CJFDTOTAL-JDCP200706013.htm

    XU Xiaohui. Micro thruster technology in deep-space exploring[J]. Development & Innovation of Machinery & Electrical Products, 2007, 20(6): 29-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JDCP200706013.htm
    [3] BLANCO A, ROY S. Rarefied gas electro jet (RGEJ) micro-thruster for space propulsion[J]. Journal of Physics D: Applied Physics, 2017, 50(45): 455201. doi: 10.1088/1361-6463/aa8c47
    [4] MARTINEZ-SANCHEZ M, POLLARD J E. Spacecraft electric propulsion-an overview[J]. Journal of Propulsion and Power, 1998, 14(5): 688-699. doi: 10.2514/2.5331
    [5] TAKAHASHI T, TAKAO Y, ERIGUCHI K, et al. Microwave-excited microplasma thruster: a numerical and experimental study of the plasma generation and micronozzle flow[J]. Journal of Physics D: Applied Physics, 2008, 41(19): 194005. doi: 10.1088/0022-3727/41/19/194005
    [6] KEIDAR M, ZHUANG T, SHASHURIN A, et al. Electric propulsion for small satellites[J]. Plasma Physics and Controlled Fusion, 2014, 57(1): 014005.
    [7] 朴思扬, 朱春艳, 褚福运, 等. 基于等效梁模型的运载火箭动力学特性仿真预示研究[J]. 应用数学和力学, 2020, 41(3): 280-291. doi: 10.21656/1000-0887.400256

    PIAO Siyang, ZHU Chunyan, CHU Fuyun, et al. Dynamic characteristics prediction of launch vehicles based on the equivalent beam model[J]. Applied Mathematics and Mechanics, 2020, 41(3): 280-291. (in Chinese) doi: 10.21656/1000-0887.400256
    [8] LYKLEMA J. Fundamentals of Interface and Colloid Science: Soft Colloids[M]. Elsevier, 2005.
    [9] QIAO R. Control of electroosmotic flow by polymer coating: effects of the electrical double layer[J]. Langmuir, 2006, 22(16): 7096-7100. doi: 10.1021/la060883t
    [10] 解智勇. 两层微流体系统中的电动流动及传热分析[D]. 博士学位论文. 呼和浩特: 内蒙古大学, 2019.

    XIE Zhiyong. The analysis of electrokinetic flow and heat transfer characteristic through a two-layer microfluidic system[D]. PhD Thesis. Hohhot: Inner Mongolia University, 2019. (in Chinese)
    [11] 罗艳, 李鸣, 杨大勇. 微通道内电渗压力混合驱动幂律流体流动模拟[J]. 应用数学和力学, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005

    LUO Yan, LI Ming, YANG Dayong. Simulation of mixed electroosmotic and pressure-driven flows of power-law fluids in microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. (in Chinese) doi: 10.3879/j.issn.1000-0887.2016.04.005
    [12] 王爽, 菅永军. 周期壁面电势调制下平行板微管道中的电磁电渗流动[J]. 应用数学和力学, 2020, 41(4): 396-405. doi: 10.21656/1000-0887.400151

    WANG Shuang, JIAN Yongjun. Magnetohydrodynamic electroosmotic flow in zeta potential patterned micro-parallel channels[J]. Applied Mathematics and Mechanics, 2020, 41(4): 396-405. (in Chinese) doi: 10.21656/1000-0887.400151
    [13] 张凯, 林建忠, 李志华. 电渗驱动微通道流中的扩散[J]. 应用数学和力学, 2006, 27(5): 512-518. http://www.applmathmech.cn/article/id/714

    ZHANG Kai, LIN Jianzhong, LI Zhihua. Diffusion in the micro-channel flow driven by electroosmosis[J]. Applied Mathematics and Mechanics, 2006, 27(5): 512-518. (in Chinese) http://www.applmathmech.cn/article/id/714
    [14] JI J, QIAN S, LIU Z. Electroosmotic flow of viscoelastic fluid through a constriction microchannel[J]. Micromachines, 2021, 12(4): 417. doi: 10.3390/mi12040417
    [15] MARTÍNEZ L, BAUTISTA O, ESCANDÓN J, et al. Electroosmotic flow of a Phan-Thien-Tanner fluid in a wavy-wall microchannel[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498: 7-19.
    [16] DIEZ F J, HERNAIZ G, MIRANDA J J, et al. On the capabilities of nano electrokinetic thrusters for space propulsion[J]. Acta Astronautica, 2013, 83: 97-107. doi: 10.1016/j.actaastro.2012.09.020
    [17] HUANG K H, HUANG H F. Two-liquid electroosmotic thrusters for micro propulsion applications[J]. Physics of Fluids, 2019, 31(12): 122003. doi: 10.1063/1.5128274
    [18] ZHENG J, JIAN Y. Electroosmotic thrusters in soft nanochannels for space propulsion[J]. Physics of Fluids, 2020, 32(12): 122005. doi: 10.1063/5.0033436
    [19] ZHENG J, JIAN Y. Space electroosmotic thrusters in ion partitioning soft nanochannels[J]. Micromachines, 2021, 12: 777. doi: 10.3390/mi12070777
    [20] ZHENG J, JIA B, JIAN Y. Steric effects on space electroosmotic thrusters in soft nanochannels[J]. Mathematics, 2021, 9(16): 1916. doi: 10.3390/math9161916
    [21] PHAN-THIEN N, TANNER R I. A new constitutive equation derived from network theory[J]. Journal of Non-Newtonian Fluid Mechanics, 1977, 93(2/3): 353-365.
    [22] OLIVEIRA P J, PINHO F T. Analytical solution for fully developed channel and pipe flow of Phan-Thien-Tanner fluids[J]. Journal of Non-Newtonian Fluid Mechanics, 1999, 387: 271-280. http://web.fe.up.pt/~fpinho/pdfs/jfma.pdf
    [23] PINHO F T, OLIVEIRA P J. Analysis of forced convection in pipes and channels with the simplified Phan-Thien-Tanner fluid[J]. International Journal of Heat and Mass Transfer, 2000, 43(13): 2273-2287. doi: 10.1016/S0017-9310(99)00303-8
    [24] PINHO F T, OLIVEIRA P J. Axial annular flow of a nonlinear viscoelastic fluid: an analytical solution[J]. Journal of Non-Newtonian Fluid Mechanics, 2000, 93(2/3): 325-337.
    [25] CRUZ D O A, PINHO F T. Skewed Poiseuille-Couette flows of sPTT fluids in concentric annuli and channels[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 121(1): 1-14. doi: 10.1016/j.jnnfm.2004.03.007
    [26] 许晓阳, 彭严, 邓方安. 三维PTT黏弹性液滴撞击固壁面问题的改进SPH模拟[J]. 应用数学和力学, 2015, 36(6): 616-627. doi: 10.3879/j.issn.1000-0887.2015.06.006

    XU Xiaoyang, PENG Yan, DENG Fang'an. Numerical simulation of 3D PTT droplet impact onto solid surface with an improved smoothed particle hydrodynamics method[J]. Applied Mathematics and Mechanics, 2015, 36(6): 616-627. (in Chinese) doi: 10.3879/j.issn.1000-0887.2015.06.006
    [27] HASHEMABADI S H, ETEMAD S G, THIBAULT J, et al. Analytical solution for dynamic pressurization of viscoelastic fluids[J]. International Journal of Heat and Fluid Flow, 2003, 24(1): 137-144. doi: 10.1016/S0142-727X(02)00204-7
    [28] FERRÁS L L, AFONSO A M, ALVES M A, et al. Annular flow of viscoelastic fluids: analytical and numerical solutions[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 212: 80-91. doi: 10.1016/j.jnnfm.2014.07.004
    [29] SARMA R, DEKA N, SARMA K, et al. Electroosmotic flow of Phan-Thien-Tanner fluids at high zeta potentials: an exact analytical solution[J]. Physics of Fluids, 2018, 30(6): 062001. doi: 10.1063/1.5033974
    [30] PARDON G, VAN DER WIJNGAART W. Modeling and simulation of electrostatically gated nanochannels[J]. Advances in Colloid and Interface Science, 2013, 199/200: 78-94. doi: 10.1016/j.cis.2013.06.006
    [31] FERRÁS L L, AFONSO A M, ALVES M A, et al. Electro-osmotic and pressure-driven flow of viscoelastic fluids in microchannels: analytical and semi-analytical solutions[J]. Physics of Fluids, 2016, 28(9): 093102. doi: 10.1063/1.4962357
    [32] ANAND V. Effect of slip on heat transfer and entropy generation characteristics of simplified Phan-Thien-Tanner fluids with viscous dissipation under uniform heat flux boundary conditions: exponential formulation[J]. Applied Thermal Engineering, 2016, 98: 455-473. doi: 10.1016/j.applthermaleng.2015.12.025
    [33] BRUUS H. Theoretical Microfluidics[M]. Oxford: Oxford University Press, 2008.
    [34] PHAN-THIEN N. A nonlinear network viscoelastic model[J]. Journal of Rheology, 1978, 22(3): 259-283. doi: 10.1122/1.549481
    [35] FERRÁS L L, NÓBREGA J M, PINHO F T. Analytical solutions for channel flows of Phan-Thien-Tanner and Giesekus fluids under slip[J]. Journal of Non-Newtonian Fluid Mechanics, 2012, 171: 97-105.
    [36] SMOLUCHOWSKI M. Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen[J]. Zeitschrift für Physikalische Chemie, 1918, 92(1): 129-168.
    [37] PARK H M, LEE W M. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows[J]. Journal of Colloid and Interface Science, 2008, 317(2): 631-636. doi: 10.1016/j.jcis.2007.09.027
    [38] PROBSTEIN R F. Physicochemical Hydrodynamics[M]. Wiley Interscience, 2003.
    [39] EIJKEL J C T. Liquid slip in micro- and nanofluidics: recent research and its possible implications[J]. Lab on a Chip, 2007, 7(3): 299-301. doi: 10.1039/b700364c
    [40] SCHOWALTER W R. The behavior of complex fluids at solid boundaries[J]. Journal of Non-Newtonian Fluid Mechanics, 1988, 29: 25-36. doi: 10.1016/0377-0257(88)85048-1
    [41] NAVIER C. Mémoire sur les lois du mouvement des fluides[J]. Mémoires de l'Académie Royale des Sciences de l'Institut de France, 1823, 6(1823): 389-440.
    [42] FERNANDES C, FERRÁS L L, HABLA F, et al. Implementation of partial slip boundary conditions in an open-source finite-volume-based computational library[J]. Journal of Polymer Engineering, 2019, 39(4): 377-387.
    [43] 张雪儿, 李得天, 张天平. 电推进三种比冲的定义及其工程应用[J]. 真空与低温, 2020, 26(6): 486-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202006011.htm

    ZHANG Xueer, LI Detian, ZHANG Tianping. Three types of specific impulses for electric propulsions: their definitions and engineering applications[J]. Vacuum & Cryogenics, 2020, 26(6): 486-493. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKDW202006011.htm
    [44] GOEBEL D M, KATZ I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters[M]. John Wiley & Sons, 2008.
    [45] HEY F G. Micro Newton Thruster Development: Direct Thrust Measurements and Thruster Downscaling[M]. Springer, 2018.
    [46] JONCQUIERES V, VERMOREL O, CUENOT B. A fluid formalism for low-temperature plasma flows dedicated to space propulsion in an unstructured high performance computing solver[J]. Plasma Sources Science and Technology, 2020, 29(9): 095005.
    [47] ESCANDÓN J P, BAUTISTA O, MÉNDEZ F, et al. Theoretical conjugate heat transfer analysis in a parallel flat plate microchannel under electro-osmotic and pressure forces with a Phan-Thien-Tanner fluid[J]. International Journal of Thermal Sciences, 2011, 50(6): 1022-1030.
    [48] ESCANDÓN J, SANTIAGO F, BAUTISTA O, et al. Hydrodynamics and thermal analysis of a mixed electromagnetohydrodynamic-pressure driven flow for Phan-Thien-Tanner fluids in a microchannel[J]. International Journal of Thermal Sciences, 2014, 86: 246-257.
    [49] DHINAKARAN S, AFONSO A M, ALVES M A, et al. Steady viscoelastic fluid flow between parallel plates under electro-osmotic forces: Phan-Thien-Tanner model[J]. Journal of Colloid and Interface Science, 2010, 344(2): 513-520.
  • 加载中
图(8)
计量
  • 文章访问数:  386
  • HTML全文浏览量:  135
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-31
  • 修回日期:  2023-03-13
  • 刊出日期:  2023-10-31

目录

    /

    返回文章
    返回