留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无额外自由度广义有限元的近不可压弹-塑性分析

马今伟 段庆林

马今伟, 段庆林. 无额外自由度广义有限元的近不可压弹-塑性分析[J]. 应用数学和力学, 2024, 45(2): 220-226. doi: 10.21656/1000-0887.440067
引用本文: 马今伟, 段庆林. 无额外自由度广义有限元的近不可压弹-塑性分析[J]. 应用数学和力学, 2024, 45(2): 220-226. doi: 10.21656/1000-0887.440067
MA Jinwei, DUAN Qinglin. Nearly Incompressible Elasto-Plastic Analysis of Extra-DOF-Free Generalized Finite Elements[J]. Applied Mathematics and Mechanics, 2024, 45(2): 220-226. doi: 10.21656/1000-0887.440067
Citation: MA Jinwei, DUAN Qinglin. Nearly Incompressible Elasto-Plastic Analysis of Extra-DOF-Free Generalized Finite Elements[J]. Applied Mathematics and Mechanics, 2024, 45(2): 220-226. doi: 10.21656/1000-0887.440067

无额外自由度广义有限元的近不可压弹-塑性分析

doi: 10.21656/1000-0887.440067
基金项目: 

中央高校基本科研业务费 DUT21GF304

科学挑战专题 TZ2018002

详细信息
    作者简介:

    马今伟(1992—),男,博士生(E-mail: majinwei_1234@163.com)

    通讯作者:

    段庆林(1979—), 男,副教授,博士,博士生导师(通讯作者. E-mail: qinglingduan@dlut.edu.cn)

  • 中图分类号: O302

Nearly Incompressible Elasto-Plastic Analysis of Extra-DOF-Free Generalized Finite Elements

  • 摘要: 研究了常规有限元方法在近不可压弹-塑性分析中的体积自锁问题,并在广义有限元框架下引入无额外自由度的强化函数对此问题进行了改进.一方面,插值函数在引入强化函数后获得了更加丰富的近似空间,提高了在体积近似不变约束下正确反映结构变形的能力;另一方面,强化函数的建立不依赖额外自由度,从而消除了传统广义有限元方法中的线性相关性问题.分析并验证了常规有限元在线弹性、超弹性和塑性分析中的体积自锁问题具有不同的触发条件和表现形式.3个典型的数值算例表明,无额外自由广义有限元能有效地缓解体积自锁并得到准确合理的计算结果.
  • 图  1  节点patch示意图

    Figure  1.  Schematic diagram of patches

    图  2  Cook膜算例中GFEM采用3种基向量计算的位移场和变形

    Figure  2.  Displacement fields and deformations obtained with the GFEM for constant, quadratic and cubic bases in the Cook membrane exmaple

    图  3  Cook膜算例中GFEM采用3种基向量在不同密度网格下收敛性测试结果

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Convergence results of the GFEM for constant, quadratic and cubic bases in the Cook membrane example

    图  4  FEM在纯弯曲橡胶梁中的变形

    Figure  4.  Deformations obtained with the FEM in the pure bending rubber beam example

    图  5  GFEM在纯弯曲橡胶梁中的变形

    Figure  5.  Deformations obtained with the GFEM in the pure bending rubber beam example

    图  6  圆杆颈缩算例

    Figure  6.  Displacement fields and deformations obtained in the necking bar example

    图  7  圆杆颈缩算例中FEM和GFEM数值结果与试验结果[15]的对比

    Figure  7.  Comparison between experimental data[15] and numerical results in the necking circular bar example

  • [1] 李嘉钰, 陈梦成, 王开心. 基于剪切效应纤维梁单元的结构非线性有限元数值模拟[J]. 应用数学和力学, 2022, 43(1): 34-48. doi: 10.21656/1000-0887.420032

    LI Jiayu, CHEN Mengcheng, WANG Kaixin. Nonlinear numerical simulation of finite elements based on fiber beam elements with shear effects for structures[J]. Applied Mathematics and Mechanics, 2022, 43(1): 34-48. (in Chinese) doi: 10.21656/1000-0887.420032
    [2] SUSSMAN T, BATHE K J. A finite element formulation for nonlinear incompressible elastic and inelastic analysis[J]. Computers & Structures, 1987, 26(1/2): 357-409.
    [3] HUGHES T J R. Generalization of selective integration procedures to anisotropic and nonlinear media[J]. International Journal for Numerical Methods in Engineering, 1980, 15(9): 1413-1418. doi: 10.1002/nme.1620150914
    [4] NAGTEGAAL J C, PARKS D M, RICE J R. On numerically accurate finite element solutions in the fully plastic range[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 4(2): 153-177. doi: 10.1016/0045-7825(74)90032-2
    [5] SHAUER N, DUARTE C A. Improved algorithms for generalized finite element simulations of three-dimensional hydraulic fracture propagation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(18): 2707-2742. doi: 10.1002/nag.2977
    [6] 毛晓敏, 张慧化, 纪晓磊, 等. 基于XFEM和GA-BP神经网络的裂纹智能识别研究[J]. 应用数学和力学, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250

    MAO Xiaomin, ZHANG Huihua, JI Xiaolei, et al. Intelligent crack recognition based on XFEM and GA-BP neural networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. (in Chinese) doi: 10.21656/1000-0887.420250
    [7] LI H, DUARTE C A. A two-scale generalized finite element method for parallel simulations of spot welds in large structures[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 28-65. doi: 10.1016/j.cma.2018.03.030
    [8] BABUŠKA I, BANERJEE U. Stable generalized finite element method (SGFEM)[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 201/204: 91-111.
    [9] SILLEM A, SIMONE A, SLUYS L J. The orthonormalized generalized finite element method-OGFEM: efficient and stable reduction of approximation errors through multiple orthonormalized enriched basis functions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 287: 112-149. doi: 10.1016/j.cma.2014.11.043
    [10] TIAN R. Extra-DOF-free and linearly independent enrichments in GFEM[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 266: 1-22. doi: 10.1016/j.cma.2013.07.005
    [11] XIAO G Z, WEN L F, TIAN R, et al. Improved XFEM (IXFEM): 3D dynamic crack propagation under impact loading[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 405: 115844. doi: 10.1016/j.cma.2022.115844
    [12] MA J W, DUAN Q L, TIAN R. A generalized finite element method without extra degrees of freedom for large deformation analysis of three-dimensional elastic and elastoplastic solids[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 392: 114639. doi: 10.1016/j.cma.2022.114639
    [13] 马今伟, 段庆林, 陈嵩涛. 无额外自由度广义有限元非线性分析[J]. 计算力学学报, 2021, 38(1): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202101009.htm

    MA Jinwei, DUAN Qinglin, CHEN Songtao. Extra-DOF-free generalized finite element method for non-linear analysis[J]. Chinese Journal of Computational Mechanics, 2021, 38(1): 60-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG202101009.htm
    [14] ELGUEDJ T, BAZILEVS Y, CALO V M, et al. B-bar and F-bar projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(33/40): 2732-2762.
    [15] CHEN J S, PAN C, WU C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 195-227. doi: 10.1016/S0045-7825(96)01083-3
    [16] BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear Finite Elements for Continua and Structures[M]. 2nd ed. UK: John Wiley & Sons, 2014.
    [17] SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer-Verlag, 1998.
  • 加载中
图(7)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  88
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-15
  • 修回日期:  2023-06-13
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回